

MICROSOFT® BUSINESS SOLUTIONS
 NAVISION® 4.0

COURSE 8401A: DEVELOPMENT II − C/SIDE
SOLUTION DEVELOPMENT

Last Revision: January, 2005

The information contained in this document represents the current view of Microsoft Corporation on the issues
discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should
not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any
information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED
OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights
covering subject matter in this document. Except as expressly provided in any written license agreement from
Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or
other intellectual property.

© 2004 Microsoft Corporation. All rights reserved. Microsoft Business Solutions−Navision, Microsoft SQL Server,
Microsoft Windows, Microsoft Visual Basic, Microsoft Excel and Microsoft Word are either trademarks or
registered trademarks of Microsoft Corporation or Great Plains Software, Inc. or their affiliates in the United States
and/or other countries. Great Plains Software, Inc. is a subsidiary of Microsoft Corporation. The names of actual
companies and products mentioned herein may be the trademarks of their respective owners.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

Introduction 1
Welcome ... 1
About the Navision Development II Course... 2
Navision Development Concepts .. 4
Student Objectives .. 5

Chapter 1: Business Case Diagnosis & Analysis 7
Introduction.. 8
Diagnosis − Executive Summary... 8
Analysis − Functional Requirements ... 9
Other Requirements .. 10
Data Model .. 11
Project Plan ... 12
Quick Interaction: Lessons Learned.. 13

Chapter 2: Managing Master Files 15
Introduction.. 16
Triggers ... 17
Multilanguage Functionality ... 24
Microsoft SQL Server .. 25
Test Your Skills − Managing Master Files − Diagnosis 26
Implementation of Use Case 1 − Managing Participants..................................... 27
Implementation of Use Case 2 − Managing Rooms.. 30
Implementation of Use Case 3 − Managing Instructors....................................... 38
Implementation of Use Case 4 − Managing Seminars .. 41
Testing Master Files .. 50
Test Your Knowledge .. 52
Conclusion... 53
Quick Interaction: Lessons Learned.. 54

Chapter 3: Managing Registrations 55
Introduction.. 56
Exporting Objects as Text Files... 57
Multilanguage Functionality in Text Messages.. 58
Main/Sub Forms .. 59
Matrix Forms ... 60
Types of Tables... 61
Additional Functions .. 64
Test Your Skills − Managing Registrations − Diagnosis 66
Implementation of Use Case 1 − Managing Seminar Registration...................... 67
Testing Seminar Registrations .. 89
Conclusion... 91
Quick Interaction: Lessons Learned.. 92

Page i

Microsoft Navision Development II − C/SIDE Solution Development

Chapter 4: Managing Posting 93
Introduction.. 94
Posting .. 95
Performance Issues .. 105
Debugging Tools ... 107
Test Your Skills − Managing Posting − Diagnosis ... 110
Implementation of Use Case 1 − Managing Seminar Registration Posting....... 111
Testing Managing Posting... 139
Test Your Knowledge .. 141
Conclusion... 141
Quick Interaction: Lessons Learned.. 142

Chapter 5: Managing Integration 143
Introduction.. 144
Changing Tables that Contain Data .. 145
Test Your Skills − Managing Integration − Diagnosis .. 146
Implementation of Use Case 1 − Managing Seminar Feature Integration......... 147
Implementation of Use Case 2 − Managing Navigate Integration 152
Testing Managing Integration.. 155
Test Your Knowledge .. 156
Conclusion... 156
Quick Interaction: Lessons Learned.. 157

Chapter 6: Managing Reporting 159
Introduction.. 160
Reporting... 161
Test Your Skills − Managing Reporting − Diagnosis ... 164
Implementation of Use Case 1 − Managing Participant List Reporting 165
Implementation of Use Case 2 − Managing Certificate Confirmation................ 173
Implementation of Use Case 3 − Managing Invoice Posting 176
Test Your Knowledge .. 183
Conclusion... 183
Quick Interaction: Lessons Learned.. 184

Chapter 7: Managing Statistics 185
Introduction.. 186
Using FlowFilters in Calculation Formulas .. 187
Test Your Skills − Managing Seminar Statistics − Diagnosis 188
Implementation of Use Case 1 − Managing Statistics 189
Test Your Knowledge .. 195
Conclusion... 195
Quick Interaction: Lessons Learned.. 196

Page ii

Contents

Chapter 8: Managing Dimensions 197
Introduction.. 198
Dimensions.. 199
Using Navision Developer’s Toolkit ... 201
Test Your Skills − Managing Dimensions − Diagnosis 203
Implementation of Use Case 1 − Managing Dimensions in Master Files 204
Implementation of Use Case 2 − Managing Dimensions in Registration........... 210
Implementation of Use Case 3 − Managing Dimensions in Seminar Posting ... 223
Implementation of Use Case 4 − Managing Dimensions in Invoicing................ 231
Testing Managing Dimensions .. 233
Test Your Knowledge .. 235
Conclusion... 235
Quick Interaction: Lessons Learned.. 236

Chapter 9: Managing Interfaces 237
Introduction.. 238
Using an Automation Server ... 239
Using Custom (or OCX) Controls .. 240
XMLPort Triggers .. 240
File Handling ... 241
Test Your Skills − Managing Interfaces − Diagnosis ... 244
Implementation of Use Case 1 − Managing E-mail Confirmation...................... 245
Implementation of Use Case 2 − Managing XML Participant List 250
Conclusion... 253
Test Your Knowledge .. 254
Quick Interaction: Lessons Learned.. 255

Chapter 10: Deployment 257
Introduction.. 258
Deployment Tasks... 258
Ongoing Support Phase .. 261
Conclusion... 276
Quick Interaction: Lessons Learned.. 277

Chapter 11: Course Summary 279
Course Summary .. 279

Chapter 12: Review Questions 283
Review Questions ... 283

Chapter 13: Additional Exercises 289
Introduction.. 290
Adding Seminar Translations .. 291
Adding Multiple Dimensions .. 293
Managing Seminar Planning ... 294
Conclusion... 303

Page iii

Microsoft Navision Development II − C/SIDE Solution Development

Appendix A: Sample Reports 305
Sample Participant List.. 306
Sample Certificate Confirmation.. 307

Appendix B: Sample XML Participant List 309
Sample XML Sem. Reg.-Participant List ... 310

Appendix C: USING C/FRONT 311
Introduction.. 312
Using C/FRONT .. 312
Two Interfaces − DLL and OCX... 312
Accessing Data From the Database Using C/FRONT in Visual Basic 314
Writing Data Back to the Database Using C/FRONT in Microsoft Excel 320
Limitations of C/FRONT .. 320

Appendix D: Answers to Review Questions 321
Answers to Review Questions... 322

Index 325

Page iv

Introduction

INTRODUCTION
Welcome

We know training is a vital component of retaining the value of your Microsoft®
Business Solutions investment. Our quality training from industry experts keeps
you up-to-date on your solution and helps you develop the skills necessary for
fully maximizing the value of your solution. Whether you choose Online
Training, Classroom Training, or Training Materials, there's a type of training to
meet everyone's needs. Choose the training type that best suits you so you can
stay ahead of the competition.

Online Training
Online Training delivers convenient, in-depth training to you in the comfort of
your own home or office. Online training provides immediate access to training
24 hours a day. It's perfect for the customer who doesn't have the time or budget
to travel. Our newest online training option, eCourses, combine the efficiency of
online training with the in-depth product coverage of classroom training, with at
least two weeks to complete each course.

Classroom Training
Classroom Training provides serious, in-depth learning through hands-on
interaction. From demonstrations to presentations to classroom activities, you'll
receive hands-on experience with instruction from our certified staff of experts.
Regularly scheduled throughout North America, you can be sure you'll find a
class convenient for you.

Training Materials
Training Materials enable you to learn at your own pace, on your own time with
information-packed training manuals. Our wide variety of training manuals
feature an abundance of tips, tricks, and insights you can refer to again and again:

Microsoft Business Solutions Courseware: The Microsoft Business Solutions
Training Courseware are very detailed training manuals, designed from a training
perspective. These manuals include advanced topics as well as training
objectives, exercises, interactions, and quizzes.

Look for a complete list of manuals available for purchase on the Microsoft
Business Solutions website: www.microsoft.com/BusinessSolutions.

Page 1

Microsoft Navision Development II − C/SIDE Solution Development

About the Navision Development II Course
The Microsoft Navision Development II course provides conceptual and practical
information for all phases of developing customized solutions in Navision. The
training material is designed for use in an instructor-led training course, but you
can also use it for self-study purposes.

Target Audience
This training material is intended for Microsoft Certified Business Solutions
Partner employees who sell and implement Navision solutions. The curriculum is
designed for participants who have completed the Navision Development I
course and passed the Navision Development I certification exam.

Training Objectives
The goal of this course is to apply the basic skills taught in the Navision
Development I course to developing solutions in Microsoft Navision. The best
way to learn solution development is to try to develop a solution yourself.
Therefore, the course is structured around a business case, which constitutes a
small development project. You will be developing a solution to meet the
requirements of a customer. During the course, you will use the concepts,
practices and methodology first introduced in the Navision Development I course
that ideally should be applied for developing any kind of Microsoft Navision
solution.

Course Structure
The course begins with the presentation of the business case. The subsequent
chapters each handle one aspect of the development project by introducing the
necessary concepts, standards and technical components that will be used for the
development. Some chapters also include a code walkthrough that will illustrate
many of these concepts.

Each set of chapter exercises is introduced with a diagnosis of the client's needs
and the associated use cases. One exercise covers one use case and consists of:

• An analysis of the individual use case.
• The design of the solutions for each use case.
• The development for each use case.
• The testing for each use case.

Some exercises have been designated as optional, even though they cover useful
and examinable material, due to the time restraints on the instructor-led course. It
is intended that participants complete them outside of the classroom.

At the end of the course, we will discuss deployment and on-going maintenance
issues.

Page 2

Introduction

Course Content
This course covers the following topics:

• Creating solutions following the Microsoft Navision Implementation
Methodology

• Internal documentation
• Debugging tools
• Performance issues
• Complex data variables and their member functions
• Multilanguage functionality
• Analysis of objects
• Posting routines
• Architecture of a basic Microsoft Navision document
• Microsoft Navision dimensions
• Deploying customized software solutions

Certification
You must be certified to develop customized solutions in Microsoft Navision.
This course prepares you for the Navision Development II certification exam.

Courseware
A database containing the finished objects and demonstration data for this course
is provided.

Suggested Course Duration
The suggested course duration for Navision Development II training is five days
of instructor-led classroom time. Additional time will be required for most
students to complete the additional exercises and review materials for exam
preparation.

Further Information
You can find further information about the technical topics mentioned in this
course in the C/SIDE® online Help (called C/SIDE Reference Guide). For more
information regarding design issues, see the Application Designer's Guide.

Page 3

Microsoft Navision Development II − C/SIDE Solution Development

Navision Development Concepts
Before you begin development, you must first determine what tools and concepts
you will use to analyze the problems presented and to design and develop the
solution to those problems. These tools and concepts are split into:

• The "rules" that you will use in development.
• The "methodology" which you will use to approach the problem.

Rules
To develop the solution, you use Microsoft Navision's development environment,
C/SIDE, and its proprietary programming language, C/AL. You access C/SIDE
by clicking TOOLS→OBJECT DESIGNER in the menu bar or SHIFT + F12.

It is assumed that participants in Development II possess a good understanding of
basic C/AL and C/SIDE functionality as covered in the Development I course.

NOTE: During the development of our solution, you may find it useful to consult the
C/SIDE Reference Guide to find information about data types, properties, triggers,
controls and functions, among other things. In addition to accessing the C/SIDE
Reference Guide from the Help menu, you can press F1 to get context-sensitive Help.

Methodology
We will take a phased approach to implementing our solution. This methodology
includes the use of UML Use Cases and Activity Diagrams in analyzing and
designing solutions. We will describe actions related to our development project
as belonging to the following phases:

• Diagnostic Phase
• Analysis Phase
• Design Phase
• Development & Testing Phase
• Deployment Phase
• On-Going Support Phase

Page 4

Introduction

Student Objectives
What do you hope to learn by participating in this course?

List three main objectives below.

1.

2.

3.

Page 5

Microsoft Navision Development II − C/SIDE Solution Development

Page 6

Chapter 1: Business Case Diagnosis & Analysis

CHAPTER 1: BUSINESS CASE DIAGNOSIS &
ANALYSIS

This chapter contains the following sections:

• Introduction
• Diagnosis − Executive Summary
• Analysis − Functional Requirements
• Other Requirements
• Data Model
• Project Plan

Page 7

Microsoft Navision Development II − C/SIDE Solution Development

Introduction
Now that it is established how to approach our business problem, you are ready
to look at the business case. This chapter covers the Diagnosis and Analysis
phases of our project.

The Diagnosis section provides the "executive summary" of the business case,
including our client's profile and a high-level description of their needs. The
following Analysis sections describe in more detail the client's specific
requirements for the system. They contain the data models based on those
requirements and they explain the basic project plan that we will follow to make
the solution a reality.

Following this chapter, the Design and Development phases are broken down in
the chapter exercises. These exercises constitute separate pieces of the
development project, but they are interrelated and therefore dependencies do
exist.

After the development is completed, the final chapter discusses deployment
issues.

Diagnosis − Executive Summary
You are a Certified Microsoft® Business Solutions−Navision® Developer
working for a Microsoft Certified Business Solutions Partner. The project to
which you have been assigned is for CRONUS International Training Academy,
a software training center that is a branch of CRONUS International Ltd. Due to
significant growth, they need a new computer-based system that will allow them
to both store and integrate all of their seminar, instructor, customer, and financial
information in one solution.

The client currently uses a full suite of Microsoft Navision granules under the
parent company CRONUS International Ltd. To take advantage of their
investment and of the existing functionality and flexibility of Microsoft Navision,
they have decided to add a customized seminar management module to their
current solution.

Generally speaking, the new module should allow them to track their master data,
to register participants in their seminars, to create invoices for customers, and to
have an overview of their statistics. The preliminary analysis and design of their
processes and requirements have already been done and are included in this
training manual.

If the client is satisfied with the seminar management module, this type of system
could be sold to other training academies. You must therefore develop the
solution in such a way that other companies could also use it.

Page 8

Chapter 1: Business Case Diagnosis & Analysis

Analysis − Functional Requirements
The client has defined their requirements for the new seminar management
module by providing the following description of how they run their training
academy.

Seminars
The CRONUS training department holds several different seminars. All seminars
have a fixed duration and allow a maximum and a minimum number of
participants. They can be overbooked in some cases, depending on the capacity
of the assigned room. They can be cancelled if there are not enough participants.
The price of a seminar is fixed. You would like to take advantage of the current
Job functionality in Microsoft Navision and define each seminar as a job. When a
seminar is completed, the seminar should be posted as a job, with additional
seminar-specific information.

Each seminar is held in a seminar room. Some seminars are held in-house and
some are outsourced. You want to be able to track costs and prices for our rooms
(that is, the rental fee). If a seminar takes place in-house, you want to assign one
of our rooms.

Gather and review certain information from the customer, such as details of his
seminar participants, the number of seminars participated in and the names of
these seminars.

Instructors
Each seminar is taught by an instructor, who is an employee from our company.
To make use of our existing resource information, each instructor must be set up
as a Resource in Microsoft Navision.

Participants
Seminar participants come from a company that is set up in Microsoft Navision
as a customer. The participants must be handled separately from the customers.
Furthermore, every customer can register several participants for a seminar.
Participants cannot be registered for a seminar unless they are connected with a
customer. This is necessary because you want to invoice customers for the
participation at seminars.

Registration
If a customer wants to register one or more participants for a seminar, enter the
relevant information into a registration form.

A registration is assigned a job number. It must be possible to assign additional
expenses to an instance of a seminar, such as catering expenses or equipment
rental. In the registration information, you must also be able to specify how the
seminar should be invoiced (for example, whether to include expenses or
catering).

Page 9

Microsoft Navision Development II − C/SIDE Solution Development

You should be able to set up additional comments for each seminar that would
allow you to specify necessary equipment or any other particular requirements
for the specific course.

Invoicing
When a seminar is finished, invoice the customers for the participation of their
registered participants. Invoicing will be by project and resources.

Reporting and Statistics
You should be able to print a list of the participants registered for a seminar.

Upon completion of some seminars, participants receive a seminar certificate.
Create such certificates from the system for individual participants.

You would like to see statistical information regarding the total price from each
seminar; breaking it down into what is chargeable and what is not chargeable.
You want to see these statistics for different time periods, for example, for a
month, for Last Year, for This Year, and To Date.

Interfaces
You should be able to send an e-mail notification to the customer's participants in
several types of situations, such as registration confirmation. You want to be able
to export the participant list for a seminar as an XML file.

Dimensions
Add analysis features by extending standard Microsoft Navision dimension
functionality to the seminar module. Dimensions should be available for the
master files, registrations, posting and invoicing.

Additional Requirements
You need a calendar system that will give us an overview of our seminar dates to
help in seminar planning. You want to be able to view seminars by date and to
set filters to see the overview for seminars with a specific seminar status, seminar
room or instructor.

Other Requirements
To make the solution as user-friendly for the client as possible, keep the
following requirements in mind throughout development:

Easy to learn: The seminar management module must be easy to understand,
and the terminology and symbols must be consistent with the rest of the program.
This means that if the user knows how to use other applications in Microsoft
Navision, they must also be able to intuitively learn our solution.

Efficient: Experienced users should be able to work with the program efficiently.
This means, for instance, that the most frequently used functions should be
accessible from the keyboard. It should be possible to efficiently use both the
mouse and the keyboard.

Page 10

Chapter 1: Business Case Diagnosis & Analysis

Clarity: The user interface must be so intuitive that the least-experienced user
can easily understand how the program functions.

Easy error correction: The program must be built so that there are as few
opportunities for error as possible. Error messages must explain the cause of the
error and provide a suggestion as to how the user can correct the error.

And finally, because the solution for the seminar management module could be
sold as an add-on to other Microsoft Navision customers, you must adhere to the
guidelines contained in the following documentation:

• Application Designer's Guide

Data Model
The following data model has been created on the basis of the client's
specification of the functional requirements:

*New table or process

Page 11

Microsoft Navision Development II − C/SIDE Solution Development

Project Plan
As in any other project, our business case must be broken down into tasks, which
make up the exercises in each chapter. There are dependencies among the
exercises and the technical complexity of the project increases as development
progresses.

The structure of the exercises reflects the principles of the implementation
methodology. Diagnosis and analysis phases therefore precede the development
and testing of the individual tasks. The end result of a chapter's exercises will be
a deliverable for that particular stage of the project.

The tasks for this project are:

• Managing Master Files (Chapter 2)
• Managing Registrations (Chapter 3)
• Managing Posting (Chapter 4)
• Managing Integration (Chapter 5)
• Managing Reporting (Chapter 6)
• Managing Statistics (Chapter 7)
• Managing Dimensions (Chapter 8)
• Managing Interfaces (Chapter 9)

Page 12

Chapter 1: Business Case Diagnosis & Analysis

Quick Interaction: Lessons Learned
Take a moment to write down three Key Points you have learned from this
chapter:

1.

2.

3.

Page 13

Microsoft Navision Development II − C/SIDE Solution Development

Page 14

Chapter 2: Managing Master Files

CHAPTER 2: MANAGING MASTER FILES
This chapter contains the following sections:

• Introduction
• Triggers
• Complex Data Types
• Multilanguage Functionality
• Microsoft® SQL Server®
• Test Your Skills

– Diagnosis
– Managing Participants
– Managing Rooms
– Managing Instructors
– Managing Seminars
– Testing Master Files

• Test Your Knowledge
• Conclusion

Page 15

Microsoft Navision Development II − C/SIDE Solution Development

Introduction

Positioning − What is our Starting Point?
We are at the beginning of our project. The best way to start any project is to
build a solid foundation. The foundation for our seminar management module
will be our master data. Our first task is to learn the basics required to create our
master files. We then define the types of master data on which we will base the
seminar management module.

Preconditions
As we are now creating master files, our only technical precondition is a clean
database. We need to know the functional requirements for the system. Our client
has provided us with a description.

Business Goals
By the end of this chapter, we will have created both the master files for the
seminar management module and the user interfaces for entering data into the
master files.

Educational Goals
By completing this chapter, you should have learned or reacquainted yourself
with the following:

• Microsoft® Business Solutions−Navision® standards for master files.
• Working with event triggers, specifically table event triggers.
• Working with the complex data types and their member functions.
• Introduction to multi-language functionality.

Page 16

Chapter 2: Managing Master Files

Triggers
Types of Triggers
There are three kinds of triggers in C/AL:

• Documentation Trigger: This is not a trigger as it contains no C/AL
code. Instead, a programmer can use the Documentation trigger to
write internal documentation for an object.

• Event Trigger: The name of these triggers always starts with "On."
The C/AL code in an event trigger is executed when the named event
occurs. For instance, the code in an OnInsert trigger for a table is
executed when a record is inserted into the table.

• Function Trigger: These triggers are created whenever you create a
function within an object. The C/AL code in this function trigger is
executed whenever the function is called.

The code in an event trigger is executed by the fin.exe program when a specified
event happens. When the user leaves a field, presses F3 (Microsoft Navision
standard shortcut for inserting a new record) or closes a form, event triggers fire.

Code in an event trigger must stand completely alone. It should not depend on an
event occurring first. The user normally controls these events.

Documentation Trigger
When referring to "Internal Documentation", this means the documentation that
is written directly into the objects themselves. There are three types of internal
documentation: the Documentation trigger of each object, code comments and
Description fields in the field definitions. For new objects, the only
documentation that might be necessary is in the Documentation Trigger.

If you look at the code within each object, notice that the Documentation trigger
is the first trigger within the object. This trigger is never executed, so it should
not contain code. Instead, it is designed such that you can enter comments about
the object.

Page 17

Microsoft Navision Development II − C/SIDE Solution Development

The use of the Documentation trigger for a new object (that you create in this
project) is optional. Here is an example of documentation:

Microsoft Business Solutions

Project: Solution Development Training

jtd: John T. Doe

No. Date Sign Description

001 05.05.2004 jtd Create new Object

Note that the initials of the developer responsible, "jtd," appear along with a
reference number (001). Each new object you create should be given the 001
sequence number. Then, when you modify the object for the first time, you
document it by writing sequence number 002. The second modification would be
documented as 003, and so on.

Table Event Triggers
There are four events that fire for a table object. There are also two event triggers
for every field in a table.

• OnInsert: This trigger fires when the user inserts a record or the
INSERT function is called with a parameter of TRUE. On a typical
form, the insert does not occur until the user successfully leaves the
primary key fields that are displayed on the form. If no primary key
fields are being displayed on the form, the insert will be delayed until
at least the record is changed. You can set the DelayedInsert property
on a form to ensure that a record is not inserted until the user leaves
the entire record.

• OnModify: This trigger fires when the user modifies a record or the
MODIFY function is called with a parameter of TRUE. On a form,
the modification does not occur until the user leaves the record.

• OnDelete: The OnDelete trigger fires when the user deletes a record
or the DELETE function is called with a parameter of TRUE. On a
form, the delete does not occur until the user presses F4 and clicks
the Yes button on the confirmation dialog (there is no confirmation
dialog on records deleted in code).

NOTE: When the INSERT, MODIFY and DELETE commands are used in code, the
default value is FALSE. Only when the TRUE parameter is set will these triggers fire.

• OnRename: This trigger fires when the user renames a record (this
involves changing any of the primary key fields) or the RENAME
function is called (this trigger is not dependant on a parameter
value). On a typical form, the rename does not occur until the user
changes the primary key fields and leaves them.

Page 18

Chapter 2: Managing Master Files

Each field in a table also has these two triggers available:

• OnValidate: The OnValidate trigger fires when the user changes a
field and leaves that field. This trigger fires before any other trigger
can occur, for example, OnModify, OnInsert or OnRename (this
includes form triggers that will be discussed later). You can use this
trigger to make sure that what the user entered into this field is valid,
or to populate other fields with values based on what the user
entered.

• OnLookup: The OnLookup trigger fires when the user clicks on the
lookup button for that field. Any code whatsoever in this trigger
(even comments) will cause C/SIDE to run only that trigger and
ignore the default lookup that could have been set up by a table
relation. For most fields this trigger is not used for that very reason.
A table relation is usually used instead.

Form Event Triggers
The events for form triggers are those that deal with the form opening and
closing, with being activated and deactivated, and with retrieving and modifying
records for the form.

The initial triggers that run for a form are the OnInit and OnOpenForm triggers.
The record and controls are not yet available in the OnInit trigger. When the form
is not the active window, but becomes the active window, the OnActivateForm
trigger is run, just as when it is deactivated, the OnDeactivateForm trigger is run.

The more complicated triggers are those that fire when records are handled in the
form. A form trigger exists for every step of a record's handling in a form. For
instance, the OnFindRecord trigger fires when a form is opened and a record is
retrieved, and the OnAfterGetRecord fires when the record is retrieved but not
yet displayed. If the form uses a table box, the OnAfterGetCurrRecord fires when
only the current record is retrieved. The OnBeforePutRecord trigger fires when
the record is about to be saved, and the OnCloseForm trigger fires when the form
is about to close.

It is important to note that there are three form event triggers, OnInsertRecord,
OnModifyRecord and OnDeleteRecord, which correspond to triggers at the table
level. If you use code at both the form and the table level, the triggers at the form
level will be executed first, followed by the triggers at the table level.

NOTE: These are just a few of the table, and form event triggers. See the C/SIDE
Reference Guide for detailed explanations of all the event triggers.

Codeunit Triggers
Codeunits are simple since they only contain two triggers by default, a
Documentation trigger and an OnRun trigger. As previously discussed, the
Documentation trigger is for information only. In the OnRun trigger, you can
write code that you want to be executed when the codeunit is run.

Page 19

Microsoft Navision Development II − C/SIDE Solution Development

Complex Data Types
Complex data types are those that have more than just a value and operators.
Simple data types like integers have a value. You can add or subtract integers to
get new values, and so on. Complex data types, however, have properties or
methods along with a value (or values). For instance, a form data type has a value
(the form object), but it also has methods like RUN that displays the form to the
user. It also has properties like LOOKUPMODE.

Record Data Type
The first complex data type you use in this project is the record data type. You
can access tables through record data types. These variables are called record
variables. Record variables are the guards that protect the data. They are used to
access, change, and manipulate the data. There are a few concepts that you must
keep in mind when working with record variables:

• The record variable is a place in memory for ONE record from the
associated table.

• The record variable is also "conscious" of the entire set of records
contained in the table.

• The record variable is NOT the record in the table, or the table itself.

Record variables have fields just like the table that they access. For example, a
record variable with a subtype of Customer would have fields like No., Name,
Address, City, and so on. Changing the fields of a record variable does not
change the record in the database.

For each event trigger, C/SIDE provides two record variables for you to use. One
is called Rec and can be considered the current record for the event. The other is
called xRec and can be considered the previous version of Rec. These two record
variables allow you to view the current record and make any needed changes.
They can have slightly different meanings depending on which table event
trigger they are being used in.

Table Event
Trigger

Rec xRec

OnInsert The record about to be
inserted

The last record the user was on
before pressing F3

OnModify
OnRename

Holds the value of the
fields about to be put into
the database

Holds the previous values of the
fields (the values when the
record was retrieved)

On Delete Holds the value of the
fields that are about to be
deleted

Holds the previous values of the
fields before the user changed
the record

Page 20

Chapter 2: Managing Master Files

Retrieving a Record
To retrieve a record or to navigate to the next record in a record set, you must use
one of the functions described in the following. These functions allow you to
search for specific records according to certain criteria, or to move forward or
backward in a record set:

GET: This function uses the primary key values to find the matching record in
the database. Once the record is found, it sets the record variable's fields to the
values in the database.

Examples
Customer.GET('50000');//No. is the primary key field
ItemUnitOfMeasure.GET('70000','PCS');//Compound primary key
Customer.GET(CustNo);//Using a variable
IF Customer.GET(CustNo) THEN //Avoids the error if GET
fails to find the record

FIND: FIND works much like GET, except that FIND respects, and is limited
by, the current filters setting. In addition, FIND can be instructed to look for
records where the key value is equal to, larger than or smaller than the search
string. The parameter for FIND is a string that can be any one of the following:
+,-,=,<, or >

Examples
SemRegistrationLine.FIND('-'); //Find the first record in
the record set
SemRegistrationLine.FIND('+');//Find the last record in the
record set

NEXT: The NEXT function retrieves the next record in the filter. The steps
parameter allows you to specify the direction and the number of records to skip.
A negative number retrieves previous records, and a positive number retrieves
following records. The default value is 1. If you enter 3 for the step parameter,
the function will skip the next two records in the filter and retrieve the third.

Examples
Customer.FIND('-'); //Finds the first record in the
Customer table (10000)
Customer.NEXT; //retrieves the next record in the table
(20000)
Customer.NEXT(-1); //retrieves the previous record (10000)
Customer.NEXT(3); //retrieves the third next record (40000)
Customer.FIND('+'); //finds the last record in the Customer
table
Customer.NEXT; //returns 0 because there is no "next"
record

Page 21

Microsoft Navision Development II − C/SIDE Solution Development

Defining a Record Set
A set of records can be referred to by the term "record set." A record set is
defined by the Key and Filters that the record variable has been assigned. To
assign a new key or filter to a record variable, use the method functions
SETCURRENTKEY, SETRANGE or SETFILTER.

SETCURRENTKEY: The SETCURRENTKEY function assigns a new key to a
record variable. All record variables use the primary key by default. If you would
like to sort the records in a different way, you must use this method function. The
new key becomes the current key and is used by FIND, NEXT and other
functions until another key is selected or until the key is reset to the primary key.
What you pass into this function is a list of fields. The function then searches the
table's keys to find a matching key.

Examples
Customer.SETCURRENTKEY("Search Name"); //Sorts by Search
Name
Customer.SETCURRENTKEY("No."); //resets to the primary key

SETRANGE: The SETRANGE function provides a quick way to set a simple
filter on a field. If you call this function with a field that already has a filter, the
system removes that filter before it sets the new one. A range in C/SIDE is of the
form "FromValue ToValue." This is the only type of filter that SETRANGE can
perform. Once a filter is applied to the record variable, the record set is changed
so that it only includes those records that meet the filter criteria. FIND or NEXT
functions on a filtered record set will only retrieve records in that record set. The
GET function, however, ignores all filters and gets the record from the database
if it can.

Examples
Customer.SETRANGE("No.",'10000','50000'); //Includes
customers with numbers from 10000 to 50000
Customer.SETRANGE("No.",'30000'); //Includes just 30000
Customer.SETRANGE("No."); //removes all filters on No.
Customer.SETRANGE("No.",'111'); //Includes NO records
(using Cronus sample data)

SETFILTER: The SETFILTER function provides a way to set a complex filter
on a field. If you call this function with a field that already has a filter, the system
removes that filter before it sets the new one or you can use the RESET function
to remove filters. You can construct filters using the following operators: (), .., &,
|, <, <=, >, <>, *. You can also use replaceable parameters (%1, %2, and so on)
just like the MESSAGE function.

Note that setting a filter with SETFILTER will remove a previous one set by
SETRANGE and vice versa.

Page 22

Chapter 2: Managing Master Files

Examples
Customer.SETFILTER("No.", '10000|20000|30000'); //Filters
down to the first three customers
Customer.SETFILTER("Credit Limit (LCY)", '>17500');
//Filters down customers with credit limits over 17,500
Customer.SETFILTER("No.", '>10000 & <> 20000'); //Filter
down to all customers after 10000 but not 20000

Using the Database Record
There are many useful functions that work with record variables, some in
conjunction with filters and ranges. Common functions are listed below:

INSERT: Use this function to insert a record into a table. It takes the values of
the fields in the record variable and inserts those into the table. If you want to run
the OnInsert trigger of the table during the insert, you must pass TRUE into the
function.

MODIFY: The MODIFY function allows you to update the database record with
the values in the record variable that have changed. If you want to run the
OnModify trigger of the table during the modification, you must pass TRUE into
the function.

MODIFYALL: Like MODIFY, but changes the values of the entire record set.
Take care that the filter or range is set or you will modify all records in the table.

DELETE: The DELETE function allows you to erase or remove the database
record identified by the primary key values in the record variable. If you want to
run the OnDelete trigger of the table during the deletion, you must pass TRUE
into the function.

DELETEALL: The method DELETEALL can be used to delete the entire
record set. Take care that the filter or range is set or you will modify all records
in the table.

RENAME: The RENAME function can be used to change the primary key fields
of a record in the database. Like the GET function, you must pass the new
primary key values as parameters to this function. It uses the values in the
primary key fields of the record variable to find the record in the database and
then uses the new values to change the record. This function works the same as
the user changing the primary key fields on a form − the change is propagated to
all related tables. The code in the OnRename trigger for the record is always run
after the RENAME method is used.

INIT: Use the INIT function to initialize a record variable. The function does not
initialize primary key fields.

Page 23

Microsoft Navision Development II − C/SIDE Solution Development

CALCFIELDS: Use this method to force the calculation of FlowFields or
BLOBs in a record variable. By default, the record variable does not calculate
these types of fields. You must specify the FlowFields or BLOBs that you want
to calculate.

COPY: Use this function to copy a record variable to another record variable. All
fields, filters, marks and keys are included in the copy.

COUNT: Use this function to count the number of records in the record set,
represented by the record variable. This takes into account any Filters that are set
and use the current key (which can increase or decrease the speed depending on
the filters set).

VALIDATE: Use this function to call the OnValidate trigger for the field you
specify. If NewValue is passed in as a parameter, the function first assigns the
field with NewValue. The VALIDATE function first checks the TableRelation
property and then executes the OnValidate trigger of the field.

Multilanguage Functionality
Microsoft Navision is multi-language enabled. This means that a localized
version of Microsoft Navision can present itself in different languages. Users can
change the language that is used to display texts, and the change is immediate.
There is no need to stop and restart Microsoft Navision.

Before you start working in a multi-language-enabled database, you must set the
working language to English − United States. Click TOOLS→LANGUAGE and select
English − United States.

To enable multi-language functionality when developing solutions, there are a
few guidelines to follow. When creating objects in Microsoft Navision, the Name
property of an object must always be in English − United States (ENU), but it
should also never be visible to the user.
Think of Name as the internal name of an element. For every field or object that
a user will see, you must set the CaptionML property. The CaptionML contains
the caption for an element for each language code. The Caption property displays
the caption for the selected language and will be defaulted from CaptionML.

Accordingly, you must make sure that text that is displayed in the user interface
must be ENU. You can run a test by selecting all objects in the Object Designer,
clicking TOOLS→LANGUAGE→EXPORT, saving the file as a text file, and then
opening that file in Notepad. There must be no other language code than A1033
for ENU in that text file.

Page 24

Chapter 2: Managing Master Files

Microsoft SQL Server
Table Relations on Microsoft SQL Server
You will create a number of table relations when creating our master files,
including some with conditions. When running Microsoft SQL Server, the
TableRelation properties and SQL Server relationships are automatically
synchronized when you create a table and when you redesign a table.

Use the Maintain Relationships setting on the Microsoft Navision database to
enable and disable the creation and maintenance of foreign key constraints for
each TableRelation property of a Navision table.

If you select this option, external tools will have access to the table relationships
(foreign key constraints) that exist between the Microsoft Navision tables. These
relationships are disabled and are not used to enforce data integrity but are
intended for modeling purposes only. For more information about table
relationships in the SQL Server Option, see the Application Designer's Guide.

Page 25

Microsoft Navision Development II − C/SIDE Solution Development

Test Your Skills − Managing Master Files − Diagnosis

Description
Our seminar management module requires master data. To determine what
master data will be needed, we must read the functional requirements again.

For our purposes, the key statements in the functional requirements are those that
reveal what the main elements of the seminar module will be. Some of these
statements are:

The CRONUS training department holds several different classes, or seminars.

• Each seminar is held in a seminar room.
• Each seminar is taught by an instructor.
• Participants in a seminar come from a company that is set up in

Microsoft Navision as a customer.

From these statements, we can see that our main objects in the seminar module
are going to be seminars, rooms, instructors and participants. With this
knowledge, we can then split up the task of creating the master files into use
cases.

Use Cases
For this chapter, each use case will consist of managing one master file.

Begin by analyzing the Microsoft Navision contacts, which you will use for the
participants, and then move on to developing the master files.

The following use case diagram illustrates the relationships between the master
files:

Page 26

Chapter 2: Managing Master Files

Implementation of Use Case 1 − Managing Participants

Managing Participants − Analysis
Our client's functional requirements describe the management of participants in
the following way:

Seminar participants come from a company that is set up in Microsoft Navision
as a customer. The participants must be handled separately from the customers.
Furthermore, every customer can register several participants for a seminar.
Participants cannot be registered for a seminar unless they are connected with a
customer. This is necessary because you want to invoice customers for the
participation at seminars.

With this information, you can now define how participants will be managed in
our module:

Purpose
The system must be able to manage participant information so that our client can
register their customers' participation in seminars and invoice them accordingly.

Preconditions
A company with which a participant can be associated must exist as a customer
in the Customer table in the program.

Postconditions
A participant is defined and associated with a customer.

Main Scenario
The seminar managers will define participant details. This includes the
participant's name, contact information (including e-mail) and association with a
defined customer.

Activity Diagram

Page 27

Microsoft Navision Development II − C/SIDE Solution Development

Managing Participants − Design
It is our design goal to use existing Microsoft Navision functionality as much as
possible. We have therefore decided that it would be best to manage participants
as "contacts." These are defined in the Contact table, which has a relation to the
Customer table. In this way, we can use existing Contact data and functionality.

GUI Design
Forms 5050 Contact Card and 5052 Contact List already exist in Microsoft
Navision for the entry and display of contact details. No additional navigation
will be necessary.

Functional Design
No additional functions have been defined for these objects.

Table Design
Both tables exist already. No additional fields are necessary.

Managing Participants − Code Walkthrough
Since we are using the existing contact functionality in Microsoft Navision, no
additional modifications are necessary. Let's take a look at some Microsoft
Navision standards and features. For further detail on these topics, \ refer to the
Development I manual or the Application Designer's Guide.

A card form is a form where users can view one record at a time from a master
table. For example, the Contact Card form (Form 5050) is used to create, view,
and modify contacts in the Contact master table (Table 5050). It is standard for
the first tab on a card form to be labeled "General" as you can see on the Contact
Card. The Primary Key field of the related master table normally appears first in
the General tab.

A list form is a form where users can view multiple records at a time in a table
box. For example, the Contact List form (Form 5052) can be used to lookup
many contacts in a table box, and then return the contact value to the card form.

Standard navigation for these forms calls for the list form to be accessed from the
card form, and vice versa. For instance, you'll notice that from the Contact Card
form, under the Contact command button, there is a menu item to the Contact
List form with an F5 shortcut. If you follow the menu item, it will open up the
Contact List form that also has a Contact command button. Under this button,
you will find a menu item to the Customer Card form with a SHIFT + F5 shortcut.
These links and shortcuts are standard navigation features in Microsoft Navision
and should be included in all Card and List forms.

Page 28

Chapter 2: Managing Master Files

On the Contact List form, the "RunFormLinkType" property of the Card menu
item is set to "OnUpdate." The RunFormLinkType property is associated to the
form you are launching from this menu item. OnUpdate means that the launched
form will be updated whenever the source form is updated.

For example, open the Contact Card form from the Contact list form and notice
what happens to the Card form when you scroll through the List form. Compare
this to what happens if the RunFormLinkType property is set to "OnOpen."

Standard Microsoft Navision naming conventions for these forms and tables are:

Type Naming Convention Example
Master Table Singular Record Customer (Table 18)
Card Form Name of Table + 'Card' Customer Card (Form 21)
List Form Name of Table + 'List' Customer List (Form 22)

Some other items of note that will be used in the upcoming exercises:

• The DataCaptionFields property for Table 5050 Contacts is set to
No., Name. These are the fields shown in the Contact Card caption
area. For usability purposes, you should specify the
DataCaptionFields or DataCaptionExpr property for all tables and
forms.

• The command buttons at the bottom of forms normally have the
HorzGlue and VertGlue properties set to Right and Bottom to ensure
that they stay in place relative to the right and bottom when a form is
resized. As the defaults are set to Left and Top, these are commonly
forgotten properties.

• Microsoft Navision has code to validate City and Post Codes that
you will be using in the exercises. You can see this code in Contacts
by looking at the OnValidate and OnLookup triggers for the City
and Post Code fields in the Contacts table.

Page 29

Microsoft Navision Development II − C/SIDE Solution Development

Implementation of Use Case 2 − Managing Rooms

Managing Rooms − Analysis
The next step is to create the tables to manage the seminar rooms in which the
seminars are held.

Our client's functional requirements describe the management of seminar rooms
in this way:

Each seminar is held in a seminar room. Some seminars are held in-house and
some are outsourced. We want to be able to track costs and prices for our rooms
(that is, the rental fee). If a seminar takes place in-house, we want to assign one
of our rooms.

With this information, we can define how seminar rooms will be managed in our
module:

Purpose
Managing the seminar rooms gives our client a way to track the availability of
rooms, their costs and the prices that can be charged for renting the rooms.

Preconditions
None.

Postconditions
We will have created a Seminar Room table and a simple form from which this
table can be accessed.

Main Scenario
The seminar managers describe room details. These details include the room
name, address, the maximum capacity, and assigned cost and price.

Activity Diagram

Page 30

Chapter 2: Managing Master Files

Managing Rooms − Design
From our analysis of the room management process, we can see that we only
need one basic table and form.

The tracking of prices and costs is the only requirement that is not so simple. We
know, however, that the Resource table in the standard Microsoft Navision
functionality provides a way of tracking this kind of information for company
resources such as employees or machinery.

GUI Design
The table should be accessible through two types of forms: a card form for easy
data entry and a tabular form to provide an overview of the data in the table.

Seminar Room Card (Form 123456703): This form enables the entry of room
details.

GENERAL TAB

COMMUNICATION TAB

Page 31

Microsoft Navision Development II − C/SIDE Solution Development

Seminar Room List (Form 123456704): This form displays room details.

Functional Design
There are no functions specified for these objects.

Table Design
The following tables will be required:

123456702 Seminar Room will hold the Seminar Room Name, Address,
Resource No. and other room-specific information.

Managing Rooms − Development
The task now is to create the objects for managing rooms in the new module. As
you can see in the GUI design, we need one table and two forms from which to
access the table.

Exercise 1 − Creating the Table and Forms for Seminar Rooms
Microsoft Navision provides a Comment table that we can use with our tables.
We would also like to use Microsoft Navision's extended text functionality with
our Seminars. (You can learn more about this functionality in the Navision
Online Help.) To follow these Microsoft Navision standards, we will need to
include our new tables into these Navision tables.

1. In table 97 Comment Line, add the option Seminar Room to the
options for the field Table Name.

2. In tables 279 Extended Text Header and 280 Extended Text Line,
add the option Seminar Room to the options for the field Table
Name.

Page 32

Chapter 2: Managing Master Files

3. Create table 123456702 Seminar Room with the following fields:

No. Field Name Type Length Comment
1 Code Code 10 Must not be blank.

2 Name Text 30
3 Address Text 30

4 Address 2 Text 30

5 City Text 30

6 Post Code Code 20 Relation to table 225 Post
Code.

7 Country Code Code 10 Relation to table 9 Country.

8 Phone No. Text 30

9 Fax No. Text 30

10 Name 2 Text 50

11 Contact Text 50

12 E-Mail Text 80

13 Home Page Text 90

14 Maximum
Participants

Integer

15 Allocation Decimal Must not be editable.

16 Resource No. Code 20 Relation to table 156
Resource, where
Type=Machine.

17 Comment Boolean FlowField; Checks whether
any lines exist on the
Comment Line table for the
Seminar Room table and
the corresponding seminar
room code.
Must not be editable.

18 Internal/External Option Options: Internal,External

19 Contact No. Code 20 Relation to table 5050
Contact

Page 33

Microsoft Navision Development II − C/SIDE Solution Development

 The primary key is Code. Set the property to specify form
123456704 as the lookup form for this table.

HINT: For all fields, you should set the Caption value to the Name. To save time, use
F8 (Copy Previous shortcut).

4. Use the wizard to create form 123456703 Seminar Room Card as
shown in the GUI design. Set the property to specify that this form
will be updated when activated.

– Add a menu button and menu items as follows:

Menu Button Options Comment
Seminar Room List (F5) Opens the lookup form.
 Comments Opens form 124 Comment Sheet

for the selected entry.
 Extended

Texts
Opens form 386 Extended Text
for the selected entry.

– Add a command button next to the Code field to provide access

to the Comment Sheet for the corresponding record.

HINT: Copy the command button with the pencil picture from the existing form 21
Customer Card and paste it into your new form. (The local variables for these objects
will be copied as well.) Set the RunFormLink property for this button so that only the
comments corresponding to the selected Seminar Room are displayed.

– Add a command button next to the E-mail field from which an
e-mail can be sent.

HINT: Copy the command button from the existing form 21 Customer Card and paste it
into your new form.

– Add a command button next to the Home Page field that will
open a hyperlink entered into the field.

HINT: Copy the command button from the existing form 21 Customer Card and paste it
into your new form.

5. Use the wizard to create form 123456704 Seminar Room List as
shown in the GUI design. The only fields necessary on this form are
Code, Name, Maximum Participants and Resource No.

– Set the properties to specify that the lines on this form are not
editable and that the Name field will be "glued" to both sides of
the form so that it expands with the form.

Page 34

Chapter 2: Managing Master Files

– Add a menu button and menu items as follows:

Menu Button Options Comments
Seminar Room Card (SHIFT + F5) Opens form 123456703

Seminar Room Card for the
selected entry. The content of
the card should change when
the user selects a different
entry in the list form.

 Comments Opens form 124 Comment
Sheet for the selected entry.

 Extended Texts Opens form 386 Extended
Texts for the selected entry.

NOTE: When creating tabular-type forms with the wizard in the Object Designer, fields
with a data type of code, decimal and integer are created with a width of 1700 rather
than a width of 1650, as is standard. Correct the field widths when creating a tabular
form with the wizard.

Exercise 2 − Adding Code for Seminar Rooms
Our first task is to improve the functionality of the City and Post Code fields.
We know that in Microsoft Navision, the standard table Post Code links cities
and post codes. Therefore, we want to write code so that when a user enters a
City, the program fills in the corresponding Post Code value from the Post Code
table, and vice versa. The existing table Post Code has functions that will help us
in doing this. (You have already seen this code used in the Contacts
walkthrough.)

1. In the Seminar Room table, create a global C/AL variable called
PostCode for the record Post Code.

2. We want to validate the City field using the ValidateCity function
from the Post Code table. Use the C/AL Symbol Menu to lookup the
parameters for this function and insert the following code in the City
− OnValidate trigger:

PostCode.ValidateCity(City,"Post Code");

3. Enter code so that when the user performs a lookup on the City field,
the program runs the Post Code table's LookUpCity function. Use the
C/AL Symbol Menu to see what parameters must be sent to the
function when calling it. When calling the function, set the
ReturnValues parameter to TRUE.

Page 35

Microsoft Navision Development II − C/SIDE Solution Development

Solution: The City − OnLookup trigger code will be:

PostCode.LookUpCity(City,"Post Code",TRUE);

4. Use the Post Code table's ValidatePostCode function to validate the

value entered by the user in the Post Code field.

 Solution: The Post Code − OnValidate trigger code will be:

PostCode.ValidatePostCode(City,"Post Code");

5. Enter code so that when the user performs a lookup on the Post
Code field, the program runs the Post Code table's LookUpPostCode
function. When calling the function, set the ReturnValues parameter
to TRUE.

 Solution: The Post Code − OnLookup trigger code will be:

PostCode.LookUpPostCode(City,"Post Code",TRUE);

The next task is to improve the functionality of the Resource No. and Contact
No. fields by retrieving information. In the following steps, we want to create
code so that when a user enters a Resource No. or a Contact No., if the Name
field is empty, it will be filled with the Name from the corresponding Resource
or Contact record.

6. Create two global record variables, one for the Resource table and
one for the Contact table.

7. Enter code so that when validating the Resource No. entered by the
user, if the Name field in the Seminar Room table is empty, the
program looks up the Name field in the corresponding Resource
record and assigns it to the Name field in the Seminar Room table.

 Solution: Enter this code in the Resource No. − OnValidate trigger:

IF Resource.GET("Resource No.") AND (Name = '') THEN
 Name := Resource.Name;

Page 36

Chapter 2: Managing Master Files

8. Enter code so that when validating the Contact No. entered by the
user, if the Name field in the Seminar Room table is empty, the
program looks up the Name field in the corresponding Contact
record and assigns it to the Name field in the Seminar Room table.

 Solution: Enter this code in the Contact No. − OnValidate trigger:

IF Cont.GET("Contact No.") AND (Name = '') THEN
 Name := Cont.Name;

9. Create two global record variables, one for the Comment Line and

one for the Extended Text Header tables.

10. Enter code in the appropriate table trigger so that when a record is
deleted, any corresponding records in the Comment Line table are
deleted as well.

HINT: Use the DELETEALL function to delete the records.

Solution: Enter this code in the OnDelete trigger:

CommentLine.SETRANGE("Table Name",CommentLine."Table
Name"::"Seminar Room");
CommentLine.SETRANGE("No.",Code);
CommentLine.DELETEALL;

11. Enter code in the appropriate table trigger so that when a record is

deleted, any corresponding records in the Extended Text Header
table are deleted as well.

HINT: Use the DELETEALL function once again, but this time, make sure that the
parameter is set to TRUE so that the code in the delete trigger of the Extended Text
Header will fire. The reason we need to set the parameter to TRUE for Extended Text
Header, where we didn't for Comment Line, is that the OnDelete trigger code for
Extended Text Header includes code to delete the associated Extended Text Line
records.

Solution: Add this code to the OnDelete trigger:

ExtTextHeader.SETRANGE("Table Name",ExtTextHeader."Table
Name"::"Seminar Room");
ExtTextHeader.SETRANGE("No.",Code);
ExtTextHeader.DELETEALL(TRUE);

Page 37

Microsoft Navision Development II − C/SIDE Solution Development

You can now add code to the triggers in the forms to ensure that the form works
properly.

12. In form 123456703 Seminar Room Card, enter code in the
appropriate form trigger so that after the program has retrieved the
record for the form, the program removes the filter on the Code field
for the table.

Solution: Add this code to the Form − OnAfterGetRecord trigger:

SETRANGE(Code);

13. In the Seminar Room Card form, in the C/AL code for the E-mail

command button, delete the existing code and enter code in the
appropriate trigger so that when the user "pushes" the button, the
program creates a new mail message.

HINT: A local C/AL variable for the Mail codeunit already exists in this trigger. Use
the OpenNewMessage function from this codeunit.

Solution: Add this code to the E-mail command button − OnPush trigger:

Mail.OpenNewMessage("E-Mail");

Implementation of Use Case 3 − Managing Instructors

Managing Instructors − Analysis
Our client's functional requirements describe the management of instructors in
the following way:

Each seminar is taught by an instructor, who can be either an employee from our
company or from an external company. To make use of our existing resource
information, each instructor must be set up as a Resource.

With this information, we can now define how instructors will be managed in our
module.

Purpose
The instructor information is managed to allow our client to assign instructors to
seminars.

Preconditions
We will use the existing Microsoft Navision Resource table.

Postconditions
An instructor will be defined.

Page 38

Chapter 2: Managing Master Files

Main Scenario
The seminar managers will define instructor details. This includes the instructor's
name, personal information and resource number.

Activity Diagram

Managing Instructors − Design
According to the analysis of the management of instructor information, we need
to create one table for managing the instructors.

We manage instructors in the same way as we manage the seminar rooms. This
means that we can define them as resources to track their assignments, costs, and
prices.

GUI Design
Start by designing the simplest forms and then move on to the more complex
ones.

Page 39

Microsoft Navision Development II − C/SIDE Solution Development

Instructors (Form 123456705): This form enables the entry of instructor
information.

Functional Design
No functions have been defined for these objects.

Table Design
The following tables will be required:

123456703 Instructor will hold the Instructor's name, Resource No., Contact
No. and whether they are an employee or external.

Managing Instructors − Development
Our task now is to create the objects to enable the management of instructors in
the new module.

Exercise 3 − Creating the Tables and Forms for Instructors
1. Create Table 123456703 Instructor with the following fields:

No. Field Name Type Length Comment
1 Code Code 10 Must not be blank.
2 Name Text 30
3 Internal/External Option Options: Internal, External
4 Resource No. Code 20 Relation to table 156

Resource, where
Type=Person.

5 Contact No. Code 20 Relation to table 5050
Contact

Page 40

Chapter 2: Managing Master Files

The primary key is the Code field. Set the property to specify form
123456705 Instructors as the lookup form for this table.

NOTE: Don't forget to specify the DataCaptionFields for the table and a Caption for
each field in the table.

2. In the Instructor table, enter code so that when the program validates
the value in the Resource No. field, if the Name field in the
Instructor record is empty, the program fills it with the Name field
from the corresponding Resource record. Do the same for the
Contact No. field.

HINT: You wrote very similar code in the previous exercise.

3. Create form 123456705 Instructors as shown in the GUI design.

Implementation of Use Case 4 − Managing Seminars

Managing Seminars − Analysis
Our client's functional requirements describe the handling of seminars in the
following way:

The CRONUS training department holds several different seminars. All seminars
have a fixed duration and allow a maximum and a minimum number of
participants. They can be overbooked in some cases, depending on the capacity
of the assigned room. They can be cancelled if there are not enough participants.
The price of a seminar is fixed. We would like to take advantage of the current
Job functionality in Microsoft Navision and define each seminar as a job. When a
seminar is completed, the seminar should be posted as a job, with additional
seminar-specific information.

With this information, we can now define how seminars will be managed in our
module.

Purpose
The Seminar table contains the main information about the seminars offered by
the training academy.

Preconditions
Before setting up a seminar, setup information such as seminar numbering must
exist. Instructor and participant information must also exist. The Job table must
exist so that seminars can be defined as jobs.

Page 41

Microsoft Navision Development II − C/SIDE Solution Development

Postconditions
A new seminar is created with all the relevant relations to connected files.

Main Scenario
When defining a new seminar, seminar managers will describe the course details,
including information such as the seminar name, duration, price, maximum and
minimum number of participants, and a job code.

Activity Diagram

Managing Seminars − Design
As we have seen in the analysis of the seminar management process, we need
two tables to manage seminar information. The first table will simply be a setup
table where the user can define seminar numbering. There will then be a table to
track the seminar profile information.

Page 42

Chapter 2: Managing Master Files

GUI Design
We start by designing the simplest forms and then move on to the more complex
ones.

Seminar Setup (Form 123456702): This form enables the entry of setup
information for the seminar module.

Seminar Card (Form 123456700): This form enables the entry of seminar
details.

GENERAL TAB

INVOICING TAB

Page 43

Microsoft Navision Development II − C/SIDE Solution Development

Seminar List (Form 123456701): This form displays seminar information.

Functional Design
No additional functions have been defined for these objects.

Table Design
The following tables will be required:

Table 123456701 Seminar Setup will hold the number series used for Seminars
and Seminar Registrations.

Table 123456700 Seminar will hold seminar specific information such as name,
maximum and minimum participants and posting groups.

Managing Seminars − Development
We are now ready to create the tables and forms to manage seminars.

Exercise 4 − Creating the Tables and Forms for Seminars
You must carry out the following tasks to create the seminar master files and
forms:

1. In table 97 Comment Line, add the option Seminar to the options for
the field Table Name.

2. In tables 279 Extended Text Header and 280 Extended Text Line,
add the option Seminar to the options for the field Table Name.

Page 44

Chapter 2: Managing Master Files

3. Create Table 123456701 Seminar Setup with the following fields:

No. Field Name Type Length Comment
1 Primary Key Code 10
2 Seminar Nos. Code 10 Relation to 308 No. Series

table.
3 Seminar

Registration
Nos.

Code 10 Relation to 308 No. Series
table.

4 Posted Sem.
Registration
Nos.

Code 10 Relation to 308 No. Series
table.

 Per Microsoft Navision standards for setup tables, the key for this

table is the Primary Key field, which is left blank.

4. Create Table 123456700 Seminar with the following fields:

No. Field Name Type Length Comment
1 No. Code 20 An alternate search field is

the Search Name field.
2 Name Text 50
3 Seminar

Duration
Decimal Decimal places 0:1

4 Minimum
Participants

Integer

5 Maximum
Participants

Integer

6 Search Name Code 30
7 Blocked Boolean
8 Last Date

Modified
Date Must not be editable.

9 Comment Boolean FlowField; CalcFormula
checks whether lines exist in
the Comment Line table for
the seminar. Must not be
editable.

10 Job No. Code 20 Relation to table 167 Job.

11 Seminar Price Decimal AutoFormat type is 1.

Page 45

Microsoft Navision Development II − C/SIDE Solution Development

No. Field Name Type Length Comment
12 Gen. Prod.

Posting Group
Code 10 Relation to table 251 Gen.

Product Posting Group.
13 VAT Prod.

Posting Group
Code 10 Relation to table 324 VAT

Product Posting Group.
14 No. Series Code 10 Must not be editable.

Relation to table 308 No.
Series.

 The primary key for this table is the No. field with a secondary key
of Search Name. Set the properties to specify form 123456701 as
the lookup and drill down form for this table.

5. In the Seminar table, enter code to perform the following validation
tasks:

– When the user changes the No. value from what it was
previously, the program gets the Seminar Setup record and uses
the TestManual function of the NoSeriesManagement codeunit
to test whether or not the number series is allowed to be
manually changed. The program then sets the No. Series field to
blank.

HINT: Use the xRec variable to test whether the No. field has been modified. You will
need a record variable with a subtype of Seminar Setup and a Codeunit variable of
subtype NoSeriesManagement to perform this task. Remember that there is only one
record in the Seminar Setup table and the primary key field is left null.

Solution:

IF "No." <> xRec."No." THEN BEGIN
 SeminarSetup.GET;
 NoSeriesMgt.TestManual(SeminarSetup."Seminar Nos.");
 "No. Series" := '';
END;

– When the user enters or changes a value in the Name field, if the

Search Name is still equal to the uppercase value of the
previous Name or if the Search Name is blank, the program
assigns the new Name to Search Name.

HINT: Use the function UPPERCASE when testing the Search Name field.

Page 46

Chapter 2: Managing Master Files

Solution
IF ("Search Name" = UPPERCASE(xRec.Name)) OR
("Search Name" = '') THEN
 "Search Name" := Name;

– When the user enters or changes a value in the Job No. field, the

program retrieves the corresponding Job record and checks that
the Blocked field is set to FALSE.

HINT: Use the TESTFIELD function to check a field's value.

Solution
Job.GET("Job No.");
Job.TESTFIELD(Blocked,FALSE);

– When the user changes the Gen. Prod. Posting Group to a new

value from what it was previously, the program checks that the
function ValidateVatProdPostingGroup for the Gen. Product
Posting Group table returns true. If it does, the program sets the
VAT Prod. Posting Group to the Def. VAT Prod. Posting Group
value from the Gen. Product Posting Group table.

Solution
IF xRec."Gen. Prod. Posting Group" <> "Gen. Prod. Posting
Group" THEN
IF
GenProdPostingGrp.ValidateVatProdPostingGroup(GenProdPostin
gGrp,"Gen. Prod. Posting Group") THEN
VALIDATE("VAT Prod. Posting Group",GenProdPostingGrp."Def.
VAT Prod. Posting Group");

6. In the Seminar table, create a new function named AssistEdit with a

return type of Boolean. In this function, enter code that checks for a
Seminar Nos. series in the Seminar Setup table. If it finds that there
is one, the program uses the SelectSeries function in the
NoSeriesManagement codeunit to check the series number. If this
function returns true, the program uses the SetSeries function in the
NoSeriesManagement codeunit to set the No. field, and the program
then exits TRUE.

Page 47

Microsoft Navision Development II − C/SIDE Solution Development

Solution
WITH Seminar DO BEGIN
 Seminar := Rec;
 SeminarSetup.GET;
 SeminarSetup.TESTFIELD("Seminar Nos.");
 IF NoSeriesMgt.SelectSeries(SeminarSetup."Seminar
Nos.",xRec."No. Series","No. Series") THEN BEGIN
 SeminarSetup.GET;
 SeminarSetup.TESTFIELD("Seminar Nos.");
 NoSeriesMgt.SetSeries("No.");
 Rec := Seminar;
 EXIT(TRUE);
 END;
END;

7. In the Seminar table, enter code in the appropriate table triggers to

perform the following tasks:

– Document your code.
– When a record is inserted, if the No. field is blank, the program

gets the Seminar Setup record and run the InitSeries function of
the NoSeriesManagement codeunit to initialize the series.

Solution: Enter the following code in the OnInsert trigger:
IF "No." = '' THEN BEGIN
 SeminarSetup.GET;
 SeminarSetup.TESTFIELD("Seminar Nos.");
 NoSeriesMgt.InitSeries(SeminarSetup."Seminar
Nos.",xRec."No. Series",0D,"No.","No. Series");
END;

– When a record is modified or renamed, the program sets the Last

Date Modified to the current date.

HINT: Use the TODAY function to get the current date.

Solution: Enter the following code in the OnModify and OnRename triggers:
"Last Date Modified" := TODAY;

Page 48

Chapter 2: Managing Master Files

– When a record is deleted, the program also deletes the
corresponding records from the Comment Line table and the
Extended Text Header table.

HINT: You created similar code for the Seminar Room comment and extended text
records.

8. Create form 123456702 Seminar Setup as shown in the GUI design.

9. Enter code in the appropriate trigger of the Seminar Setup form so
that when the user opens the form, the program resets the record, and
if it does not get a record, it inserts a new one.

Solution: Enter the following code in the Form − OnOpenForm trigger:
RESET;
IF NOT GET THEN
 INSERT;

10. Create form 123456700 Seminar Card as shown in the GUI design.

– Set the property to update the form when it is activated.
– Add a menu button and menu items as follows:

Menu
Button

Options Comment

Seminar List (F5) Opens the lookup form.
 Comments Opens the form 124 Comment Sheet for the

selected entry.
 <Separator>
 Extended

Texts
Opens the form 386 Extended Texts for the
selected entry.

– Add a command button next to the No. field to provide access to

the Comment Sheet for the corresponding record.
– Set the RunFormLink property for this button so that only the

comments corresponding to the selected Seminar are displayed.
– Enter code in the appropriate trigger so that when the user clicks

the AssistEdit for the No. field, the program runs the AssistEdit
function, and if it returns true, updates the current form.

Solution: Enter the following code in the No. - OnAssistEdit trigger:
IF AssistEdit THEN
 CurrForm.UPDATE;

Page 49

Microsoft Navision Development II − C/SIDE Solution Development

– Enter code in the appropriate trigger so that after the form gets
the record, the program removes the table's filter on the No.
field.

Solution: Enter the following code in the Form - OnAfterGetRecord trigger:
SETRANGE("No.");

11. Create form 123456701 Seminar List according to the GUI design.

Include the fields No., Name, Seminar Duration, Minimum
Participants (not visible), Maximum Participants (not visible),
Seminar Price, Gen. Prod. Posting Group, VAT Prod. Posting
Group and Job No.

– Make the form not editable.
– Glue the Name field to both sides of the form.
– Remember to reset the width of fields with data type Code,

Decimal and Integer to 1650.
– The navigation from this form is be the same as the Seminar

Card form, except that instead of a List option, there will be an
option called Card (SHIFT + F5) from which the Seminar Card
form will open for the selected seminar.

Testing Master Files
We have now completed the exercises to create the master files for our seminar
management module. You have probably tested pieces as you worked on them,
but now try to run this test script to check your work. If you run into areas that
don't function as expected, try to figure out how to get them working. Remember
not all pieces have been coded yet, so the test script may seem incomplete.

NOTE: In order to test the Email functionality, the system you are using will need to
have Outlook running with a profile set up.

1. Start by selecting form 123456702 Seminar Setup in the Object
Designer and clicking Run. The fields in this form are blank as we
haven't set them up yet. Click the lookup button for Seminar Nos. to
open the No. Series form. We have setup our seminars to use the
standard Microsoft Navision numbering functionality. Setup all three
numbers with values of your choosing, set to Default automatically
and close and re-open the Seminar Setup form. See that your values
were saved.

Page 50

Chapter 2: Managing Master Files

2. Select form 123456700 Seminar Card in the Object Designer and
click Run. Tab off the No. field and see that a number is assigned
with the values you set up in step 1. Fill in the fields on the General
tab and then move to the Invoicing tab. Use the lookup to select a
Gen. Prod. Posting Group value with a Default VAT Prod. Posting
Group set and see the VAT Prod. Posting Group fill in automatically.
Click F5 to move to the Seminar List form. Close the Seminar List
form.

3. Still on the Seminar Card form, use the menu items on the Seminar
Command button to enter comments and extended texts. When you
have finished close the Seminar Card form.

4. We have designed the Seminar module so that Instructors are set up
as Resources and Contacts in our system. Set up a new Resource
(type Person) and Contact that you will use to test the Instructor
functionality. When you are done select form 123456705 Instructors
in the Object Designer and click Run. Enter a new instructor using
the Resource and Contact lookup buttons to select the Resource and
Contact you set. Note that when you use the Resource lookup, all
the Resources in the list should be of type Person. Try entering a
Resource No. or Contact No. that doesn't exist to test your
validation. When you have finished close the Instructors form.

5. We have designed the Seminar module so the Rooms are set up as
Resources of type Machine and Contacts in our system. Set up a new
Resource and Contact that you will use to test the Seminar Room
functionality. When you are done select form 123456703 Seminar
Room Card in the Object Designer and click Run. Create a new
Seminar Room by entering a value in the Code field. We added code
so that the Name field would be defaulted from the Resource or
Contact if the Name field was blank. See if that code is functioning.
On the Communications tab, try entering an E-Mail address and
Home Page and use the command buttons next to them. Check the
menu items under the Seminar Room command button.

You have now finished testing your master files!

Page 51

Microsoft Navision Development II − C/SIDE Solution Development

Test Your Knowledge
Review Questions

1. Where is internal documentation located for new objects?

2. To ensure that Microsoft Navision's multilanguage functionality is

properly enabled, which property must be set for controls?

3. Suppose that in the Seminar table, you want to make sure that the

value in the Minimum Participants field is always less than the
value in the Maximum Participants field. You want to perform this
check whenever a record is inserted, whenever a record is changed
and whenever a value is entered in the Maximum Participants field
(and the Minimum Participants field is not empty). Which table
and field event triggers would you use for these three checks? What
code would you use to perform these checks?

4. What do the Rec and xRec record variables do?

5. What function would you use to retrieve a specific record using its

primary key?

6. Using the table example Employee below, answer the following

questions:

– Assuming you are working with the record variable
EmployeeVar, what code would you write to get the record for
Employee No. 3475? What code would you write to jump to the
fourth next record?

– What code would you write to jump to the last record in the
table?

– What code would you use to define a record set to include the
records between employee number 3475 and 6434?

– What code would you use to define a record set to include the
records greater than 5834?

– What code would you use to define a record set for employees in
the Purchasing department only? What code would you use to
remove the filter on department?

– What code would you use to change Ann Smith's department
from Sales to Purchasing?

– What code would you use to delete all Receivables employees?

Page 52

Chapter 2: Managing Master Files

Table: Employee (key = Employee No.)

Employee No. Name Department
5834 John Doe Purchasing
3723 Ann Smith Sales
3475 Bill Skaggs Receivables
6434 Todd Lawrence Sales
9482 Janet Davila Receivables
0980 Susan Morris Purchasing
9483 Rick Hamilton Sales

7. What is the standard shortcut to open a Card form from the

associated List form? What about to open the List form from the
Card form?

8. What two triggers does a Codeunit have by default?

9. Name two ways to set the lookup form for a table field. What

happens if both are set?

Conclusion
Chapter Summary
You have now created our master files and user interfaces. In doing so, you
examined triggers and looked at how they might be used for stand-alone code.
You learned about complex data types, specifically the record data type, and how
to retrieve one or more records. You also looked at internal documentation for
new objects and basic multi-language functionality.

Positioning − Where do you go from here?
Now that you have tables and user interfaces for our master data, you can begin
to develop the forms and code necessary to carry out transactions.

Page 53

Microsoft Navision Development II − C/SIDE Solution Development

Quick Interaction: Lessons Learned
Take a moment to write down three Key Points you have learned from this
chapter:

1.

2.

3.

Page 54

Chapter 3: Managing Registrations

CHAPTER 3: MANAGING REGISTRATIONS
This chapter contains the following sections:

• Introduction
• Exporting Objects as Text Files
• Multi-Language Functionality in Text Messages
• Main/Sub forms
• Matrix Forms
• Types of Tables
• Additional Functions
• Test Your Skills

– Diagnosis
– Managing Seminar Registration

• Test Your Knowledge
• Conclusion

Page 55

Microsoft Navision Development II − C/SIDE Solution Development

Introduction

Positioning − What is the starting point?
You have finished creating our master files and now are ready to create the
functionality to allow users to perform transactions with the master data.

Preconditions
To create the transactions in this chapter, the master files must be created.

Further preconditions are knowledge of the following areas:

• Internal documentation.
• Introduction to multi-language functionality.
• Working with event triggers, specifically table event triggers.
• Working with the record data type, including retrieving one or more

records.

Business Goals
By the end of this chapter, you will have created the tables and forms necessary
for performing transactions in the program.

Educational Goals
By completing this chapter, you will have learned or reacquainted yourself with
the following:

• Exporting and importing objects as text files.
• Using multi-language functionality to create messages for the user.
• Using main and subforms.
• Creating matrix forms.
• Using virtual tables.
• Using temporary tables.

Page 56

Chapter 3: Managing Registrations

Exporting Objects as Text Files
Analyzing and sometimes even modifying objects can be much easier when the
objects are in text file format. Any object in the Object Designer can be exported
as text, and the text representation is complete. Once the object is in a text file,
you can change the text file and import it back into Microsoft® Business
Solutions−Navision® as an uncompiled object.

It is important to note that you cannot use the Import Worksheet when importing
a text file. This means that you will not receive a warning about overwriting
existing tables, you will not have the opportunity to skip the import of some
objects and you will not have the opportunity to merge objects. You must
therefore be careful when importing text files into Microsoft Navision.

To export one or more objects as a text file:

1. Select the object or objects in the Object Designer.

2. Click FILE→EXPORT in the menu bar.

3. In the Export Objects dialog window, select Text Format as the Save
as type. Enter a file name.

4. Click OK. One text file is created containing the text representations
for the object or objects.

The text file contains all the details of the object. The first line for every object in
the file begins with the word OBJECT, the object type, number and name. For
example:

OBJECT Table 123456703 Instructor

The next section contains the object's date, time, and version properties, labeled
with the title OBJECT-PROPERTIES.

The following section is labeled PROPERTIES and includes the object's triggers
(those that contain code) and properties (those that do not contain default values).

The next section lists the subobjects. For tables, these consist of FIELDS and
KEYS. This section contains the subobject properties that do not contain default
values and the triggers that contain code.

The last section is the code section, labeled CODE. This section contains the
global variables and functions for the object.

Page 57

Microsoft Navision Development II − C/SIDE Solution Development

Once you have made changes to the text file and have saved it, you can import
the text file back into Microsoft Navision.

1. Open the Object Designer.

2. Click FILE→IMPORT.

3. Select the appropriate file in the Import Objects dialog window and
click Open. The object or objects will be imported. The objects will
not be compiled, so you must compile them in Microsoft Navision
before using them.

Multilanguage Functionality in Text Messages
When you create messages for the user, you must make sure that the text and the
object names in the messages are enabled for multi-language functionality.

Error and text messages must be entered as text constants so that they can be
easily translated. The C/AL Globals and C/AL Locals forms have a Text
Constants tab with a hidden column, ConstValueML, which displays all the
languages for a text constant. Text constants replace the use of hard coded,
language-dependent text strings.

Once it has been assigned as a text constant, the message can then be used in
code as in the following example:

ERROR(Text001); //where Text001 is defined as Text Constant
in the global or local variables

The following example uses the FIELDCAPTION function within an error
message. Text Constant 025 value is "Please enter "Yes" in %1 and/or %2 and/or
%3".

ERROR(Text025,FIELDCAPTION(Receive),
 FIELDCAPTION(Invoice), FIELDCAPTION(Ship));

When the code is run, the error message translates into: Please enter "Yes" in
Receive and/or Invoice and/or Ship.

Page 58

Chapter 3: Managing Registrations

When referring to fields in a message, the code should refer to the caption rather
than the name of the field. By using the FIELDCAPTION function, the current
caption of a field will be returned as a string. The field property CaptionML must
be populated to enable this functionality. The TABLECAPTION function can be
used to return the table name. The following code returns the caption of the
Document Type field.

SalesLine.FIELDCAPTION("Document Type");

Main/Sub Forms
To follow Microsoft Navision standards, we will build our Seminar Registration
window in this chapter's exercises similar to Microsoft Navision's existing Sales
Invoice windows. Let's take a look at some Microsoft Navision standards and
features. For further detail on these topics, please refer to the Application
Designer's Guide.

A main/subform is a combination of a card form with a tab control and a subform
that contains a table box. For an example, look at the Sales Invoice form (Form
43), which is used to create, view, or modify sales invoice documents. As you
can see, the Sales Invoice form has both a tab control box, and a subform. This
tab control on the main form is associated with the header table, Sales Header
(Table 36). The HorzGlue and VertGlue property for the tabcontrol should be set
to Both and Top respectively.

If you take a look at the properties of the subform, notice that the "SubFormID"
property is set to the "Sales Invoice Subform" (Form 47). To link the subform
records to the current Sales Header record, the SubFormLink property is set. The
HorzGlue and VertGlue property for the subform is set to Both.

If you open the Sales Invoice Subform, notice that the form is associated to the
line table, Sales Line (Table 37). The form is a tabular form, essentially a table
box that displays certain fields from the table. Notice that the key fields from the
Sales Line, Document Type, Document No., and Line No., are NOT displayed.
As this is a worksheet type form, notice the following standards:

• The key fields from the Sales Line, Document Type, Document No., and
Line No., are NOT displayed.

• HorzGlue and VertGlue properties for the tablebox on this subform are
set to Both.

• AutoSplitKey property set to Yes.

Page 59

Microsoft Navision Development II − C/SIDE Solution Development

Standard Microsoft Navision naming conventions for these forms and tables are:

Type Naming Convention Example
Document Table
(Header)

Name of Transaction or
Document + 'Header'

Sales Header (Table 36)

Document Table
(Line)

Name of Transaction or
Document + 'Line'

Sales Line (Table 37)

Document Form Name of Document Represented Sales Invoice (Form 43)
Document
Subform

Name of Document Represented
+ "Subform"

Sales Invoice Subform
(Form 47)

Matrix Forms
A matrix form is created by using the MatrixBox form control and should be
used in cases where there is a many-to-many relationship between two tables. In
Microsoft Navision, it is used in the system to show totals by time period. Form
113, Budget, is an example of a Matrix form used for this purpose.

A matrix box is a composite control (comprised of more than one control) that
can show information from several tables at the same time. The first two tables
are the vertical and the horizontal table of the MatrixBox control. In the matrix
part of the control, each cell can be used to display information that is calculated
on the basis of fields in these two tables, or on information that is retrieved from
other tables (with values from the first two tables being used to select records).
Each cell in the matrix is the intersection of a record from the vertical and the
horizontal table. The part to the left of the vertical divider bar displays records
from the vertical table, the table that is the source table of the form, in a way
similar to an ordinary TableBox control. To the right of the divider bar is the
matrix itself. Above the matrix, the records from the horizontal table are
displayed (in the style that is normally used for the labels in a table box). The
title area of this area is the matrix heading. The horizontal table is called the
matrix source table.

Like other controls, the MatrixBox control has its own triggers. These triggers
are OnFindRecord, OnNextRecord, OnAfterGetRecord, OnAfterGetCurrRecord
and OnBeforePutRecord.

Page 60

Chapter 3: Managing Registrations

It can be confusing to create a matrix box for the first time. The best way to learn
the process is to create a sample. Step-by-step instructions follow on how to put
the tables and the form controls together to create a simple multiplication table:

1. Create a new blank form and select as the source table, the table you
want to use as the vertical table. In this example, use the Integer
table.

2. Add a matrix box to the form from the toolbox.

3. In the Property window, set the Name property of the MatrixBox
control to MultTable, and set the HorzGlue and VertGlue properties
to Both. Set the MatrixSourceTable property to the Integer table.

4. Insert a text box with a source expression of the No. field.

5. Add a text box without a source expression to the empty part of the
MatrixBox control. Check the InMatrix property of this text box − it
should be Yes.

6. Add a text box without a source expression to the last empty part (the
matrix heading) of the MatrixBox control. Check the
InMatrixHeading property of this text box − it should be Yes.

7. Add a source expression to the text box in the matrix heading (the
last one added). The source expression should point to a field from
the MatrixSourceTable. If the matrix box was named MultTable, and
the horizontal table is the Integer table, it could be:
CurrForm.MultTable.MatrixRec.Number

8. Add a source expression to the text box in the matrix. Here, it could
be: CurrForm.MultTable.MatrixRec.Number * Number

9. Test the form by running it.

Types of Tables
Thus far, we have been using regular database tables to implement our seminar
module. In the upcoming exercises, we will make use of some other kinds of
tables.

Virtual Tables
A virtual table contains information provided by the system. In C/SIDE you have
access to a number of virtual tables. They work in much the same way as normal
database tables, but you cannot change the information in them. That is, you can
only read the information. Another difference is that virtual tables are not stored
in the database as normal tables are, but are computed by the system at run time.

Page 61

Microsoft Navision Development II − C/SIDE Solution Development

Because a virtual table can be treated just like an ordinary table, you can use the
same methods to access information in virtual tables. For example, you can use
filters to get subsets or ranges of integers or dates.

The most popularly used virtual tables in C/SIDE include:

• Date
• Integer

However, there are other virtual tables that are usable within Microsoft Navision:

• File
• Drive
• Monitor
• Session
• Database File
• Table Information
• Field
• Server
• Windows Object
• Windows Group Member
• SID - Account ID
• User SID
• Along with many others

The Object and Field tables are particularly important when working with C/AL.

Because the virtual tables are not stored in the database, you cannot view them
directly. To view a virtual table, you can create a tabular form based on it. They
are the tables with the highest numbers in the table list (2000000000+). The
Application Designer's Guide has further information on a number of the virtual
tables.

For our purposes, we will be using the Date virtual table. The Date virtual table
provides easy access to days, weeks, months, quarters and years. This table has
three fields:

• Period Type: Days, weeks, months, quarters, or years
• Period Start: The date of the first day in the period
• Period End: The date of the last day in the period

Page 62

Chapter 3: Managing Registrations

Temporary Tables
A temporary table can be regarded as a temporary variable that is used to hold a
table. You can do almost anything with a temporary table that you can do with a
normal database table; the only differences between a normal database table and
a temporary table are that:

• Temporary tables are not stored in the database, but only held in
memory on your workstation until the table is closed.

• The write transaction principle that applies to normal database tables
does not apply to temporary tables. If you are not familiar with the
transaction principle, refer to the Application Designer's Guide.

The advantage of using a temporary table is that all interaction with a temporary
table takes place on the client. This reduces the load both on the network and on
the server. When you need to perform many operations on data in a specific table
in the database, you can load the information into a temporary table while you
modify it. Because all operations are local, this speeds up the process.

Creating a temporary table is much like creating a record variable:

1. In either the C/AL Globals or C/AL Locals variable window, create
the temporary table variable with the data type Record. Select the
table you want to make a temporary copy of in the Subtype field.

2. Open the Properties window for the variable, and set the Temporary
property to Yes.

The temporary table variable is now ready to be used just like any other record
variable.

System Tables
System Tables are stored in the database just like regular tables, but they differ in
that they are created automatically by the system. You can read, write, modify,
and delete the information in these tables. The eight system tables in C/SIDE are
primarily used to manage security and permissions. The Application Designer's
Guide has detailed information on each one of the System Tables.

Page 63

Microsoft Navision Development II − C/SIDE Solution Development

Additional Functions
Useful Functions Review
You were introduced to many of the following functions in Development I. As
you will use them in the upcoming exercises, see how many you can remember.
Look up the others in the C/SIDE Reference Guide.

• CALCDATE
• DATE2DMY
• DATE2DWY
• ROUND
• RUNMODAL
• CONFIRM
• MESSAGE
• ERROR
• TESTFIELD
• WORKDATE
• VALIDATE
• FORMAT
• COUNT

Form Functions
Form functions are called through the CurrForm variable. This variable is a
reference to the instance of the current form. The following lists just a few of the
most useful form functions available. See the C/SIDE Reference Guide for a
complete list.

CurrForm.UPDATE: Use this function to save the current record and then
update the controls in the form. If you set the SaveRecord parameter to FALSE,
this function will not save the record before the system updates the form.

CurrForm.SETSELECTIONFILTER: Use this function to have the system
note the records the user has selected on the form, mark those records in the table
specified, and set the filter to "marked only".

CurrForm.CLOSE: Use this function to close the current form.

Page 64

Chapter 3: Managing Registrations

CurrForm.EDITABLE: Use this function to return the current setting of the
Editable property and to change the setting of the property. Most, but not all
properties can also be changed from within code. This property is especially
useful if you want to use the same form for viewing and editing, but only allow
some users to edit the records.

Control Functions
Microsoft Navision also has a number of functions available for form controls.
To access the functions of a control, you must name the control first. You should
then use the following syntax:

CurrForm.<ControlName>.<Function>

The following list gives some information about the most useful control
functions, but it is, of course, not a complete list. Refer to the C/SIDE Reference
Guide for more information on control functions.

EDITABLE: Use this function to return the current setting of the Editable
property and to change the setting of the property. Other properties can also be
changed from within code, but not all of them can.

VISIBLE: Use this function to return the current setting of the Visible property
and to change the setting of the property. This property is especially useful if
only some users are allowed to view a particular field.

Be aware that if you make a text box not visible in a table box control, the user
can change that property by going to View, Show Columns.

UPDATEEDITABLE: Use this function to make a text box not editable or
editable dynamically. It does not change the Editable property. The next time the
user enters the text box, you have to call this function again to make it editable or
not editable. This function can only be called from the OnBeforeInput trigger of
the control.

UPDATEFONTBOLD: Use this function to dynamically make a field Bold or
not. This function can only be called from the OnFormat trigger of the control.

Page 65

Microsoft Navision Development II − C/SIDE Solution Development

Test Your Skills − Managing Registrations − Diagnosis

Description
Now that our master data is complete, we must make it possible for users to
apply the master data to daily transactions related to registrations. The functional
requirements define the role of registrations this way:

If a customer wants to register one or more participants for a seminar, we enter
the relevant information into a registration form.

Therefore, the main process related to registrations is managing seminar
registrations. There is an additional optional requirement to manage seminar
planning. This use case and related exercise is covered in the Additional
Exercises section.

Use Cases
Based on the results of the diagnosis, the analysis and implementation phases of
this chapter are the following use case:

• Managing Seminar Registration

Page 66

Chapter 3: Managing Registrations

Implementation of Use Case 1 − Managing Seminar
Registration

Managing Seminar Registration − Analysis
Our client's functional requirements describe the process of seminar registration
in the following way:

If a customer wants to register one or more participants for a seminar, enter the
relevant information into a registration form.

A registration is assigned a job number. It must be possible to assign additional
expenses to an instance of a seminar, such as catering expenses or equipment
rental. In the registration information, we must also be able to specify how the
seminar should be invoiced (for example, whether to include expenses or
catering).

We should be able to set up additional comments for each seminar that would
allow us to specify necessary equipment or any other particular requirements for
the specific course.

Using this information, we can further define how the management of seminar
registrations will be reflected in the module we are now creating.

Purpose
The registration of a participant involves ensuring that a place is reserved for the
participant, that the participant's company can be invoiced, that appropriate
facilities are reserved, and that seminar and participant information can be
tracked.

Preconditions
Master data for the seminars, instructors, rooms, and participants must exist.
Master data about the customers to which the participants are associated must
exist.

Postconditions
Seminar instances are created with the ability to register participants and assign
rooms, charges and instructors.

Page 67

Microsoft Navision Development II − C/SIDE Solution Development

Main Scenario
When seminars are going to be held in the training academy, the seminar
managers will create an "instance" of the seminar and specify the following
details:

• An instructor
• An available and properly equipped room
• Any charges or additional comments

The seminar managers can then register participants for that instance of the
seminar.

Activity Diagram

Page 68

Chapter 3: Managing Registrations

Managing Seminar Registration − Design
As can be seen from the analysis of the seminar registration management
process, there are two main processes: the creation of seminar instances and the
registration of participants. Within the first main process, create seminar
instances, there are three subprocesses: define seminar registration details, assign
additional comments and assign seminar charges.

The following diagram shows the relationship between the system tables and the
forms used to control these. Here, the prerequisite tables are shown to the left, the
main processing tables are in the middle and the subprocess tables are to the
right.

GUI Design
The forms for the seminar registration and the navigation between them reflect
the relationships shown in the previous diagram. We begin by defining the
simplest forms first so that they can be integrated with the more complex forms
at the end of the GUI design.

Page 69

Microsoft Navision Development II − C/SIDE Solution Development

Seminar Comment List (Form 123456707): This form displays the comments
for a seminar.

Seminar Comment Sheet (Form 123456706): This form enables the entry of
comments for a seminar.

Page 70

Chapter 3: Managing Registrations

Seminar Charges (Form 123456724): This form enables the entry of charges
for a seminar.

Seminar Registration (Main Form 123456710, Subform 123456711): Since
the seminar registration and participant registration are so closely linked, it would
be best to handle them in one window with header and lines as shown in the
following screenshot. This form actually consists of two forms, a header form
and a subform that contains the lines.

GENERAL TAB

Page 71

Microsoft Navision Development II − C/SIDE Solution Development

SEMINAR ROOM TAB

INVOICING TAB

Page 72

Chapter 3: Managing Registrations

Seminar Registration List (Form 123456713): This form displays the seminar
registrations.

Functional Design
The user will eventually be able to post and print reports from the Seminar
Registration, but these functions are designed and implemented later in the
course.

Table Design
The following tables are required for registrations:

Table 123456710 Seminar Registration Header holds the information for one
instance of a Seminar, which we refer to as a registration.

Table 123456711 Seminar Registration Line holds the information for one
participant in a seminar registration.

Table 123456704 Seminar Comment Line holds comments for the seminar
registrations.

Table 123456712 Seminar Charge holds charges related to the seminar
registration. These are in addition to the individual participant charges of the
Seminar Registration Line table.

Managing Seminar Registration − Development
Your first tasks are to create the tables and forms that we have designed. After
creating the objects, we create code to allow them to function better.

Page 73

Microsoft Navision Development II − C/SIDE Solution Development

Exercise 5 − Creating the Tables and Forms for Seminar
Registration
Our first task will be to create the Seminar Comment Line table. The fastest way
to create this table is by exporting an existing table as a text file, making the
appropriate changes to the text file and importing it back into Microsoft
Navision.

1. Create table 123456704 Seminar Comment Line by exporting the
standard table Sales Comment Line, modifying it and importing it
back into Microsoft Navision.

– To do this, first export the table 44 Sales Comment Line as a text
file using the steps given earlier in the chapter.

– Open the file in Notepad. Change the object number to
123456704 and the object name to "Seminar Comment Line."

– Wherever you find the word "Sales", replace it with the word
"Seminar".

– Replace the OptionString values for the Document Type field to
"Seminar Registration, Posted Seminar Registration" as shown in
the table design.

– Set the LookupFormID and DrillDownFormID properties to
form 123456707.

– Finally, save the text file, import it into Navision, and compile it.

The completed table will have the following fields:

No. Field

Name
Type Length Comment

1 Document
Type

Option Options: Seminar Registration, Posted
Seminar Registration.

2 No. Code 20
3 Line No. Integer
4 Date Date
5 Code Code 10
6 Comment Text 80

– The key for the table is Document Type, No., Line No. This

will also be imported with the table.
2. Create form 123456707 Seminar Comment List with the fields No.,

Date and Comment as shown in the GUI design. Set the property to
specify that this form is not editable.

Page 74

Chapter 3: Managing Registrations

3. Create form 123456706 Seminar Comment Sheet with the fields
Date, Comment and Code (not visible).

– Set the properties to automatically split the key, allow multiple
new lines and to specify that the program should not insert the
record until the user has left the record.

– Add a menu button and menu item as follows:

Menu Button Option Comment
Comments List (F5) Opens the lookup form.

– In the appropriate form trigger, run the function SetUpNewLine

whenever the user enters a new record. This function was
imported with the Seminar Comment Line table.

4. Create table 123456710 Seminar Registration Header with the

following fields:

No. Field Name Type Length Comment
1 No. Code 20
2 Starting Date Date
3 Seminar Code Code 20 Relation to the Seminar table.
4 Seminar Name Text 50
5 Instructor

Code
Code 10 Relation to Instructor table.

6 Instructor
Name

Text 50 FlowField; The CalcFormula
should look up the Name field
on the Instructor table. Must not
be editable.

7 Status Option Options: Planning, Registration,
Closed, Canceled.

8 Duration Decimal Decimal Places 0:1
9 Maximum

Participants
Integer

10 Minimum
Participants

Integer

11 Room Code Code 20 Relation to Seminar Room table.
12 Room Name Text 30

Page 75

Microsoft Navision Development II − C/SIDE Solution Development

No. Field Name Type Length Comment
13 Room Address Text 30
14 Room

Address2
Text 30

15 Room Post
Code

Code 20 Relation to Post Code table.
There should be no validation or
testing of the table relation.

16 Room City Text 30
17 Room Phone

No.
Text 30

18 Seminar Price Decimal AutoFormatType=1
19 Gen. Prod.

Posting Group
Code 10 Relation to Gen. Product Posting

Group table.
20 VAT Prod.

Posting Group
Code 10 Relation to VAT Product Posting

Group table.
21 Comment Boolean FlowField; The CalcFormula

should check whether lines exist
on the Seminar Comment Line
table for the current Seminar
Registration Header. Must not be
editable.

22 Posting Date Date
23 Document

Date
Date

24 Job No. Code 20 Relation to Job table.
25 Reason Code Code 10 Relation to Reason Code table.
26 No. Series Code 10 Relation to No. Series table.

Must not be editable.
27 Posting No.

Series
Code 10 Relation to No. Series table.

28 Posting No. Code 20

 The primary key for this table is the No. field, with a secondary key
of Room Code. The sum index field for the secondary key is
Duration. Set the property to specify form 123456713 as the lookup
form.

Page 76

Chapter 3: Managing Registrations

5. Create table 123456712 Seminar Charge with the following fields:

No. Field Name Type Length Comment
1 Seminar

Registration
No.

Code 20 Relation to table 123456710
Seminar Registration Header.
Must not be blank.

2 Line No. Integer
3 Job No. Code 20 Relation to table 167 Job
4 Type Option Options: Resource, G/L Account
5 No. Code 20 If Type=Resource, relation to

table 156 Resource
If Type=G/L Account, relation
to table 15 G/L Account.

6 Description Text 50
7 Quantity Decimal Decimal Places 0:5
8 Unit Price Decimal AutoFormatType = 2

Minimum value of 0.
9 Total Price Decimal Must not be editable.

AutoFormatType=1
10 To Invoice Boolean Initial value is Yes.
11 Bill-to

Customer No.
Code 20 Relation to Customer table.

12 Unit of
Measure Code

Code 10 If Type=Resource, relation to the
Code field of table 205 Resource
Unit of Measure table, where the
Resource No. = No.
Otherwise, relation to table 204
Unit of Measure.

13 Gen. Prod.
Posting Group

Code 10 Relation to table 251 Gen.
Product Posting Group.

14 VAT Prod.
Posting Group

Code 10 Relation to table 324 VAT
Product Posting Group.

15 Qty. per Unit
of Measure

Decimal

16 Registered Boolean Must not be editable.

 The primary key is Seminar Registration No., Line No. and a
secondary key of Job No.

Page 77

Microsoft Navision Development II − C/SIDE Solution Development

6. Create form 123456724 Seminar Charges with the following fields:
Type, No., Description, Bill-to Customer No., To Invoice, Unit of
Measure Code, Quantity, Unit Price and Total Price. Set the
property to automatically split the key.

7. Create table 123456711 Seminar Registration Line with the
following fields:

No. Field Name Type Length Comment
1 Document No. Code 20 Relation to Seminar Registration

Header table.
2 Line No. Integer
3 Bill-to

Customer No.
Code 20 Relation to Customer table.

4 Participant
Contact No.

Code 20 Relation to Contact table.

5 Participant
Name

Text 50 Flowfield; Lookup the value
based on the Participant Contact
No. Must not be editable.

6 Register Date Date Must not be editable.
7 To Invoice Boolean Initial value is Yes.
8 Participated Boolean
9 Confirmation

Date
Date Must not be editable.

10 Seminar Price Decimal AutoFormatType = 2
11 Line Discount

%
Decimal Decimal places 0:5; The

minimum value is 0 and the
maximum is 100.

12 Line Discount
Amount

Decimal AutoFormatType = 1

13 Amount Decimal AutoFormatType = 1
14 Registered Boolean Must not be editable.

 The primary key is Document No., Line No.

8. Create subform 123456711 Seminar Registration Subform according
to the GUI design. The fields to include on the subform are: Bill-to
Customer No., Participant Contact No., Participant Name,
Participated, Register Date, Confirmation Date, To Invoice,
Registered, Seminar Price, Line Discount %, Line Discount
Amount and Amount.

– Set the width, height and positioning properties for the form and
the table box so that there is no empty space around the table
box.

Page 78

Chapter 3: Managing Registrations

– Set the properties for the Line Discount % and Line Discount
Amount fields so that they are blank if the value is 0.

– Set the form property to specify that the program will
automatically create a key for a newly inserted record.

9. Create form 123456710 Seminar Registration main form as shown in

the GUI design. Include the three General, Seminar Room and
Invoicing tabs, and the subform box.

– Set the subform box properties so that the width and height are
the same as that of the subform form. This means that the
subform will expand and contract both horizontally and
vertically when the user resizes the form. There must be no
border. Give the subform the name SeminarRegistrationLines.

– Set the subform box property to set the Seminar Registration
Subform as the SubFormID. Set the property to link the subform
to its table.

– Set the Drilldown property of the Instructor Name to No.
– Add menu button and menu items as follows:

Menu Button Option Comment
Registration List (F5) Opens the lookup form.
 Comments Opens form 123456706 Seminar

Comment Sheet. The link should run
whenever there is an update.

 <Separator>
 Charges Opens form 123456724 Seminar Charges

for the corresponding Seminar
Registration No. The link should run
whenever there is an update.

10. Create form 123456713 Seminar Registration List form with the

following fields: No., Starting Date, Seminar Code, Seminar
Name, Status, Duration, Maximum Participants and Room Code.

– Set the property to specify this form as not editable.
– Add the menu button and menu item as follows:

Menu Button Option Comment
Registration Card (SHIFT + F5) Opens form 123456710 Seminar

Registration for the selected entry.

Page 79

Microsoft Navision Development II − C/SIDE Solution Development

Exercise 6 − Adding Code for Seminar Charges
In the Seminar Charge table, enter code to perform the following tasks:

1. When a record is inserted into the table, the program gets the
corresponding Seminar Registration Header record and sets the Job
No. field to that of the Seminar Registration Header.

2. When a user deletes a record, the program checks that the
Registered field is false. Users should not be allowed to delete
registered seminars.

HINT: Use the TESTFIELD function to test the Registered value.

3. When a user enters or changes a value in the Job No. field, the
program checks that the corresponding record in the Job table is not
blocked and that the status of the job is Order.

4. When a user enters or changes a value in the Type field, the program
sets the Description to blank.

5. When a user enters or changes a value in the No. field, the program
checks the following:

– If the Type is Resource:
a. Tests that the corresponding Resource is not blocked.
b. Tests that the Gen. Prod. Posting Group field is filled on

the Resource record.
c. Sets the Description field of the Seminar Charge table to the

Name from the Resource.
d. Sets the Gen. Prod. Posting Group, the VAT Prod.

Posting Group, the Unit of Measure Code, and the Unit
Price to the corresponding values in the Resource record.

– If the Type is G/L Account:

a. Gets the corresponding G/L Account record and runs the
CheckGLAcc function.

b. Tests that Direct Posting is TRUE for the G/L Account.
c. Sets the Description field of the Charge table to the Name of

the G/L Account.
d. Sets the Gen. Prod. Posting Group and VAT Prod.

Posting Group to the corresponding values in the G/L
Account record.

Page 80

Chapter 3: Managing Registrations

Solution: The code in the No. − OnValidate trigger should look like this:

CASE Type OF
 Type::Resource:
 BEGIN
 Res.GET("No.");
 Res.TESTFIELD(Blocked,FALSE);
 Res.TESTFIELD("Gen. Prod. Posting Group");
 Description := Res.Name;
 "Gen. Prod. Posting Group" := Res."Gen. Prod. Posting
Group";
 "VAT Prod. Posting Group" := Res."VAT Prod. Posting
Group";
 "Unit of Measure Code" := Res."Base Unit of Measure";
 "Unit Price" := Res."Unit Price";
 END;
 Type::"G/L Account":
 BEGIN
 GLAcc.GET("No.");
 GLAcc.CheckGLAcc;
 GLAcc.TESTFIELD("Direct Posting",TRUE);
 Description := GLAcc.Name;
 "Gen. Prod. Posting Group" := GLAcc."Gen. Prod.
Posting Group";
 "VAT Prod. Posting Group" := GLAcc."VAT Prod. Posting
Group";
 END;
END;

6. When a user enters or changes the value in the Quantity field, the

program calculates the Total Price field by multiplying the Unit
Price by the Quantity. The same thing is done when the user enters
or changes the Unit Price.

HINT: Use the ROUND function to ensure the correct number of decimal places.

7. When a user enters or changes a value in the Unit of Measure Code
field, the program does the following:

– If the Type is Resource:
a. Gets the corresponding Resource record.
b. If the Unit of Measure Code is blank, the program sets it to

the Base Unit of Measure Code from the Resource record.
c. Finds the corresponding record in the Resource Unit of

Measure table and sets the Qty. per Unit of Measure field
to the corresponding value in the Resource Unit of Measure
table.

Page 81

Microsoft Navision Development II − C/SIDE Solution Development

d. Calculates the Unit Price according to the Unit Price from
the Resource record.

– If the Type is G/L Account:

a. Sets the Qty. per Unit of Measure to 1.
b. If the current field is the Unit of Measure Code field, the

program validates the Quantity. Use CurrFieldNo to check
the current field. We want to do this in case OnValidate is
triggered by some other field or code besides Unit of
Measure Code.

Solution: The code in the Unit of Measure Code − OnValidate trigger should
look like this:

CASE Type OF
 Type::Resource:
 BEGIN
 Resource.GET("No.");
 IF "Unit of Measure Code" = '' THEN
 "Unit of Measure Code" := Resource."Base Unit of
Measure";
 ResUnitofMeasure.GET("No.","Unit of Measure Code");
 "Qty. per Unit of Measure" := ResUnitofMeasure."Qty.
per Unit of Measure";
 "Unit Price" := ROUND(Resource."Unit Price" * "Qty.
per Unit of Measure");
 END;
 Type::"G/L Account":
 "Qty. per Unit of Measure" := 1;
END;
IF CurrFieldNo = FIELDNO("Unit of Measure Code") THEN
 VALIDATE(Quantity);

Exercise 7 − Adding Code to the Seminar Registration Header
Table and Form
In the Seminar Registration Header table, enter code to perform the following
tasks. Create your error messages using text constants to take advantage of
Multilanguage functionality.

1. Create a new function called AssistEdit with a return type of Boolean
that:

– Takes a parameter called OldSemRegHeader which is a record
variable of the Seminar Registration Header table.

– Checks for a Seminar Nos. series in the Seminar Setup table.
– If found, uses the SelectSeries function in the

NoSeriesManagement codeunit to check the series number.

Page 82

Chapter 3: Managing Registrations

– If SelectSeries returns TRUE, the program uses the SetSeries
function in the NoSeriesManagement codeunit to set the No.
field, and the program then exits TRUE.

HINT: The AssistEdit function you created for the Seminar table is very similar.

2. Create a new function called InitRecord which:

– Sets the Posting Date to the work date if the Posting Date is
blank (= 0D)

– Sets the Document Date to the work date.
– Gets the Seminar Setup record and runs the SetDefaultSeries

function of the NoSeriesManagement codeunit to set the Posting
No. Series value.

Solution
IF "Posting Date" = 0D THEN
 "Posting Date" := WORKDATE;
"Document Date" := WORKDATE;
SemSetup.GET;
NoSeriesMgt.SetDefaultSeries("Posting No.
Series",SemSetup."Posted Sem. Registration Nos.");

3. When a new record is inserted, if the program finds that the No. field

is blank, it gets the Seminar Registration Nos. series from the
Seminar Setup table and tests it. It then fills the No. field by using
the InitSeries function of the NoSeriesManagement codeunit. The
program then runs the new InitRecord function.

Solution: Enter the following code in the OnInsert trigger:

IF "No." = '' THEN BEGIN
 SemSetup.GET;
 SemSetup.TESTFIELD(SemSetup."Seminar Registration Nos.");
 NoSeriesMgt.InitSeries(SemSetup."Seminar Registration
Nos.",xRec."No. Series",0D,"No.","No. Series");
END;
InitRecord;

4. When the user deletes a record, the program tests that the Status is

Canceled and shows an error if the Status is not Canceled. The
program also shows an error if the header has registered Seminar
Registration Lines or if there are associated Seminar Charge lines.
The program then deletes corresponding records in the Seminar
Comment Line table.

Page 83

Microsoft Navision Development II − C/SIDE Solution Development

5. When a user attempts to rename a record, the program shows an
error stating that a Seminar Registration Header cannot be renamed.

HINT: Use a text constant and the TABLECAPTION function.

6. If the user changes No. to a new value from what it was previously,

the program tests whether the number series (from the Seminar
Registration Nos. field in the Seminar Setup) is allowed to be
changed manually by using the TestManual function from the
NoSeriesManagement codeunit. It then sets the No. Series field to
blank.

IF "No." <> xRec."No." THEN BEGIN
 SemSetup.GET;
 NoSeriesMgt.TestManual(SemSetup."Seminar Registration
Nos.");
 "No. Series" := '';
END

7. When the user changes a value in the Starting Date from what it

was previously, the program tests that the Status is Planning.

8. When the user changes a value in the Seminar Code from what it was
previously, the program performs the following tasks:

– Shows an error if there are any corresponding registered Seminar
Registration Line records.

– Gets the Seminar record and tests the following: that the
Blocked field is false, that the Gen. Prod. Posting Group field
is not blank and that the VAT Prod. Posting Group field is not
blank.

– Fills in the following fields with values from the Seminar record:
Seminar Name, Duration, Seminar Price, Gen. Prod. Posting
Group, VAT Prod. Posting Group, Minimum Participants,
Maximum Participants. The program validates and fills in the
Job No. field.

9. When the user enters or changes a value in the Instructor Code, the

program calculates the value of the Instructor Name field.

10. When the user enters or changes a value in the Room Code, if the
Room Code is blank, the program sets to blank the Room Name,
Room Address, Room Address2, Room Post Code, Room City
and Room Phone No. fields. Otherwise, the program gets the
Seminar Room record and fills in those fields with the corresponding
Seminar Room values.

Page 84

Chapter 3: Managing Registrations

11. When the user enters or changes a value in the Room Code, if the
Maximum Participants in the corresponding Seminar Room
record is less than the Maximum Participants in the Seminar
Registration Header, the program asks the user whether the
Maximum Participants in the Seminar Registration Header
should be changed to the number of Maximum Participants from
the Seminar Room record. If the user answers yes, the program
changes the Maximum Participants value in the Seminar
Registration Header.

HINT: Use a CONFIRM message.

12. When the user enters or changes a value in the Room Post Code, the

program runs the ValidatePostCode function from the Post Code
table.

13. When the user performs a lookup on the Room Post Code field, the
program runs the LookUpPostCode function from the Post Code
table.

14. When the user enters or changes a value in the Room City field, the
program runs the ValidateCity function from the Post Code table.

15. When the user performs a lookup on the Room City field, the
program runs the LookUpCity function from the Post Code table.

16. When the user changes the Seminar Price to a new value from what
it was before and the Status is not Canceled, the program searches
for corresponding, unregistered Seminar Registration Lines. If any
are found, the program asks the user whether the Seminar Price
should be changed in the unregistered Seminar Registration Lines.
If the user answers yes, the program validates and modifies the lines
with the new Seminar Price.

HINT: Use the MODIFY function to change the Seminar Registration Lines.

17. When the user changes the Job No. to a new value from what it was
before, if the program finds any Seminar Charge records with the old
Job No., it asks the user whether the Job No. should be changed on
the Seminar Charge lines. If the user answers yes, then the program
modifies Seminar Charge lines with the new Job No., otherwise if
the user answers no, the program changes the Job No. back to the
old Job No.

HINT: Use the CONFIRM message function and use the MODIFYALL function to
change the Seminar Charge lines.

Page 85

Microsoft Navision Development II − C/SIDE Solution Development

18. When validating the Posting No. Series field, if the Posting No.
Series is not blank, the program tests that there are values in the
Seminar Registration Nos. and Posted Sem. Registration Nos.
fields on the Seminar Setup table. It then runs the TestSeries function
from the NoSeriesManagement codeunit. Regardless of whether the
Posting No. Series field is blank, the program tests that the Posting
No. field is blank.

Solution: Enter the following code in the Posting No. Series − OnValidate
trigger:
IF "Posting No. Series" <> '' THEN BEGIN
 SemSetup.GET;
 SemSetup.TESTFIELD("Seminar Registration Nos.");
 SemSetup.TESTFIELD("Posted Sem. Registration Nos.");
 NoSeriesMgt.TestSeries(SemSetup."Posted Sem. Registration
Nos.","Posting No. Series");
END;
TESTFIELD("Posting No.",'');

19. When the user performs a lookup on the Posting No. Series field,

the program tests that there are values in the Seminar Registration
Nos. and Posted Sem. Registration Nos. fields on the Seminar
Setup table. If the LookupSeries function of the
NoSeriesManagement codeunit is true, the program validates the
Posting No. Series field.

Solution: Enter the following code in the Posting No. Series − OnLookup trigger:
WITH SemRegHeader DO BEGIN
 SemRegHeader := Rec;
 SemSetup.GET;
 SemSetup.TESTFIELD("Seminar Registration Nos.");
 SemSetup.TESTFIELD("Posted Sem. Registration Nos.");
 IF NoSeriesMgt.LookupSeries(SemSetup."Posted Sem.
Registration Nos.","Posting No. Series") THEN
 VALIDATE("Posting No. Series");
 Rec := SemRegHeader;
END;

20. In the Seminar Registration form, when the user clicks the AssistEdit

on the No. field, the program runs the AssistEdit function for xRec,
and if it returns true, updates the current form.

HINT: Use the UPDATE function of the CurrForm object to update the current form.

21. Enter code in the appropriate trigger so that after the form gets the
record, the program removes the filter on the No. field.

Page 86

Chapter 3: Managing Registrations

Exercise 8 − Adding Code for Seminar Registration Lines
In the Seminar Registration Line table, enter code to perform the following tasks:

1. Create a new function called GetSemRegHeader that gets the
corresponding Seminar Registration Header record and stores it in a
global variable.

2. Create a new function, CalcAmount, to calculate the Amount field
as the Seminar Price reduced by the Line Discount %. Use the
ROUND function.

3. When the user inserts a new line, the program retrieves the
corresponding Seminar Registration Header record, sets the Register
Date to the current work date, and sets both the Seminar Price and
the Amount to the Seminar Price from the Seminar Registration
Header.

4. When the user deletes a record, the program tests that the line is not
registered.

5. When the user changes the value in the Bill-to Customer No. field
from what it was previously, the program shows an error if the line is
registered.

6. When the user performs a lookup on the Participant Contact No.,
we want to show the Contact List filtered for the Bill-to Customer
Number.

 To do so, the program filters the Contact Business Relation table to
the appropriate customer using the Bill-to Customer No. It then
filters the Contact table to only those records where the Company
No. is the same as that of the Contact Business Relation record. The
program runs the Contact List form (using the RUNMODAL
function) using the filtered Contact record, and if the user selects a
contact and clicks OK, the program assigns the Contact No. field of
the Contact record to the Participant Contact No.

Page 87

Microsoft Navision Development II − C/SIDE Solution Development

Solution: Insert the following code in the Participant Contact No. − OnLookup
trigger:
ContBusinessRelation.RESET;
ContBusinessRelation.SETRANGE("Link to
Table",ContBusinessRelation."Link to Table"::Customer);
ContBusinessRelation.SETRANGE("No.","Bill-to Customer
No.");
IF ContBusinessRelation.FIND('-') THEN BEGIN
 Cont.SETRANGE("Company No.",ContBusinessRelation."Contact
No.");
 IF FORM.RUNMODAL(FORM::"Contact List",Cont) =
ACTION::LookupOK THEN
 "Participant Contact No." := Cont."No.";
END;

CALCFIELDS("Participant Name");

7. When the user enters or changes a value in the Seminar Price, the

program validates the Line Discount %.

8. Create a new function called UpdateAmount to calculate the
Amount field to equal the Seminar Price minus the Line Discount
Amount. Use the ROUND function with the Amount Rounding
Precision field on the G/L Setup table as the precision parameter.

9. When the user enters or changes a value in the Line Discount %, the
program calculates the Line Discount Amount (rounded by using
the Amount Rounding Precision from the G/L Setup table) and then
updates the Amount field using the new UpdateAmount function.

10. When the user enters or changes a value in the Line Discount
Amount, if the Seminar Price is not 0, the program calculates the
Line Discount % using the Line Discount Amount and the
Seminar Price. If the Seminar Price is 0, the program sets the Line
Discount % to 0. The program runs the UpdateAmount function.

11. When the user enters or changes a value in the Amount, the program
checks that the Bill-to Customer and Seminar Price fields are not
empty. It rounds the Amount value with the Amount Rounding
Precision field from the G/L Setup table as the precision parameter.
It calculates the Line Discount Amount and the Line Discount %.

Page 88

Chapter 3: Managing Registrations

Solution: Insert the following code in the Amount − OnValidate trigger:
TESTFIELD("Bill-to Customer No.");
TESTFIELD("Seminar Price");
GLSetup.GET;
Amount := ROUND(Amount,GLSetup."Amount Rounding
Precision");
"Line Discount Amount" := "Seminar Price" - Amount;
IF "Seminar Price" <> 0 THEN
 "Line Discount %" := ROUND("Line Discount Amount" /
"Seminar Price" * 100,0.00001)
ELSE
 "Line Discount %" := 0;

Testing Seminar Registrations
Use the following test script to check the Seminar Registrations functionality. It
is assumed that you have at least one Seminar Room, Instructor and Seminar set
up from the test script in the last chapter.

1. Select the Seminar Registration form in the Object Designer and
click Run.

2. Tab off the No. field. The next number in the number series you set
up in the last chapter should be automatically filled into the No.
field. Note that when you start a new record the Posting Date and
Document Date values are set to the work date.

3. Select a Seminar Code and see that the Seminar Name is
populated.

4. Select an Instructor Code and see that the Instructor Name is
populated.

5. On the Seminar Room tab, select a Room Code and see that the
other fields are populated.

6. On the Invoicing tab, enter a Price and a Job No. The values don't
matter for now, but the Job No. becomes important in the next
chapter when we post registrations.

7. In the subform, use the lookup to select a Bill-to Customer. Then use
the Participant Contact No. lookup. The values in the Contact List
should be filtered to only show Contact related to the Bill-to
Customer. Select a Contact and click OK. The Participant Name
field should be populated automatically.

Page 89

Microsoft Navision Development II − C/SIDE Solution Development

8. Tab through the rest of the fields on the line. Note that the Seminar
Price is defaulted from the Invoicing tab. Enter a value in the Line
Discount % and notice the Line Discount Amounts and Amount
fields calculate accordingly.

9. Select the Charges menu item from the Registration command
button and enter a new charge. See that the line item values are
populated appropriately based on the Resource or G/L Account
selected.

10. That concludes the testing for this use case. If there are areas that
didn't function as expected, make the necessary changes.

Page 90

Chapter 3: Managing Registrations

Test Your Knowledge
Review Questions

1. What function is used to retrieve a field's caption? A table's caption?

2. Why is it necessary to be cautious when importing objects as text

files?

3. When is a matrix box used on a form?

4. Can you write to a virtual table?

5. When are virtual tables computed by the system?

6. What does the AutoSplitKey property do?

7. What function can you use to force calculation of a FlowField?

Conclusion
Chapter Summary
In this chapter, you created the tables and forms necessary to register participants
in seminars. In doing so, you also created code to improve usability and data
validation.

Positioning − Where do you go from here?
The next step is to take the transaction information and create a posting routine
with which you can certify participants and create ledger entries for completed
courses. You will also make it possible to post invoices to customers.

Page 91

Microsoft Navision Development II − C/SIDE Solution Development

Quick Interaction: Lessons Learned
Take a moment to write down three Key Points you have learned from this
chapter:

1.

2.

3.

Page 92

Chapter 4: Managing Posting

Page 93

CHAPTER 4: MANAGING POSTING
This chapter contains the following sections:

• Introduction
• Posting

– Journal Tables
– Ledger Tables
– Posting Routines
– Check Line Codeunit
– Post Line Codeunit
– Post Batch Codeunit
– Posting Routine − Code Walkthrough

• Documentation in Existing Objects

– Code Comments

• Document Posting Routines
– Document Posting Routine − Code Walkthrough

• Performance Issues

– Table Locking
– Keys and Queries
– Reducing Impact on the Server
– Reducing Impact on Network Traffic

• Debugging Tools

– Debugger
– Code Coverage
– Handling Runtime Errors
– Client Monitor

• Test Your Skills

– Diagnosis
– Managing Seminar Registration Posting

• Test Your Knowledge
• Conclusion

Microsoft Navision Development II − C/SIDE Solution Development

Page 94

Introduction

Positioning − What is our Starting Point?
Our seminar module now contains master files and a means of creating
registrations. We can therefore begin to look at how we can use the registration
information to create ledger entries for seminars through a posting routine.

Preconditions
The preconditions for this chapter are that the seminar, room, instructor and
participant master files must exist. We must also have the seminar registration
tables and forms.

Further preconditions are knowledge of the following areas:

• Writing internal documentation
• Enabling multilanguage functionality
• Exporting and importing objects
• Working with event triggers
• Working with complex data types and their member functions
• Using virtual tables
• Using temporary tables

Business Goals
In this chapter, our goal is to produce a posting routine that will post seminar
registration information to ledger tables.

Educational Goals
Through completing this story, you will have learned or reacquainted yourself
with the following:

• Creating journal posting routines
• Creating document posting routines
• Writing internal documentation for modifications to existing objects
• Debugging code
• Programming for low-impact on the application

Chapter 4: Managing Posting

Page 95

Posting
Before we begin work on our seminar posting, let's examine some of the
elements involved in posting.

Journal Tables
A Journal is a temporary work area for the user. Records can be inserted,
modified and deleted as the user wishes. There are actually three tables that are
used to make up the Journal. Journal Line is the main table. There are two
supplemental tables called Journal Template and Journal Batch. These tables are
used primarily as filters on the Journal Line table.

The primary key of the Journal Line table is a compound key (that is, it has more
than one field). It consists of Journal Template Name, Journal Batch Name
and Line No. The journal form that the user chooses sets the Journal Template
Name, and this does not change unless the user goes into a different journal
form. The Journal Batch Name may be changed at the top of the form (the
options that are available depend upon the Template chosen), but only one can be
viewed at a time. The Line No. keeps each record in the same template and batch
unique. Line number is incremented automatically by the form (see the
AutoSplitKey property). The user never sees most of the primary key fields on
the form (other than the batch).

The journal form lets the user enter journal lines that will be added to the detail
tables of the system (the ledgers), but nothing happens until the user decides to
post. The user can leave the lines in the journal table as long as they wish without
posting.

Ledger Tables
A ledger is a protected table that holds all the transactions for a particular
functional area. These records are permanent and cannot be deleted or modified
except through special objects. Also, records cannot be inserted directly into the
table. Records cannot get into a ledger except through a Posting Routine, and
Posting Routines only post journal lines.

The primary key is simply the Entry No. field. There are also many secondary
keys, and most are compound. They are set up for reports, forms and FlowFields.
The Ledger table holds the majority of detail information for the functional area.

A ledger table should never be modified directly, especially not by inserting or
deleting records. There is a linkage between most of the ledger tables back to the
General Ledger. Because of this linkage, any modifications made directly to the
table can be disastrous. Usually, the only way to undo such changes is to restore
the most recent backup of the database.

Microsoft Navision Development II − C/SIDE Solution Development

Page 96

Posting Routines
A posting routine is a group of codeunits that is responsible for ensuring that all
transactions that are put into the corresponding ledgers are correct per line and
correct as a whole. The posting routine takes Journal Lines, checks them,
converts them to ledger entries, inserts them into the Ledger table and ensures
that all transactions made were consistent.

Although there are many different types of posting routines in Microsoft®
Business Solutions−Navision®, there are some general rules that pertain to all of
them. The primary codeunit that does the work of posting for a particular journal
is simply called the posting routine. This codeunit is named after the Journal
name with the addition of "-Post Line." Its main job is to transfer the information
from the Journal record to the Ledger table, though it also does other things, such
as calculations and data checking.

Posting Routine Companion Codeunits
The posting routine codeunit has two companion codeunits: one is named "-
Check Line" and the other "-Post Batch." The Check Line routine is called by the
Post Line routine to check each Journal line before sending it to the server for
processing. Thus, all of its testing routines either do not touch the server at all or,
at most, only once in each posting process.

The Post Batch routine repeatedly calls the Check Line routine to test all lines. It
then repeatedly calls the Post Line routine to post all lines. The Post Batch
routine is the only one that actually reads or updates the Journal table; the others
simply use the Journal record passed into them. In this way, a programmer can
call the Post Line routine directly (from another posting routine) without having
to update the Journal table. The Post Batch routine is used only when the user
selects Post within the Journal form.

Standardized Object Names
The last digits of the Object Numbers of these posting routines are standardized.
The Check Line always ends with 1, the Post Line with 2 and the Post Batch with
3. As an example, Gen. Jnl.-Check Line is Codeunit 11, Gen. Jnl.-Post Line is
Codeunit 12 and Gen. Jnl.-Post Batch is Codeunit 13.

Note that none of these routines have any interface that requires user input. This
is so that they can be called from other applications without having to worry
about messages popping up (except error messages). The Post Batch routine has
a dialog that displays the progress of the posting and lets the user cancel. The rest
of the user interface that has to do with posting is handled by another set of
routines:

• Post routine (which just asks whether you want to post and then calls
Post Batch) has an Object ID that ends with 1.

Chapter 4: Managing Posting

Page 97

• Post and Print routine (which asks whether you want to post, calls
Post Batch and then calls the Register Report) ends with 2.

• Batch Post (which asks whether you want to post the selected
batches and then repeatedly calls Post Batch for each one) is called
from the Journal Batches form and ends with 3.

• Batch Post and Print (which confirms that the user wants to post and
then calls Post Batch for each batch and then calls the Register
Report) ends with 4.

As an example, Gen. Jnl.-Post is Codeunit 231, Gen. Jnl.-Post+Print is Codeunit
232, Gen. Jnl.-B.Post is Codeunit 233 and Gen. Jnl.-B. Post+Print is Codeunit
234.

Check Line Codeunit
The name of this codeunit explains its function. It is designed to check the
Journal Line that is passed to it. It does so without reading from the server,
except perhaps the first time it is called.

Before checking any of the fields, this codeunit usually makes sure the journal
line is not empty. It does so by calling the EmptyLine function in the Journal
table. If the line is empty, the codeunit skips it by calling the EXIT function.
There is no error, and the posting process will continue.

The last thing that the codeunit verifies is the validity of the dimensions that are
passed into the function in a temporary Dimensions table. This is done by some
simple calls to the DimensionManagement codeunit. We will discuss dimensions
later in this course. If the codeunit does not stop the process with an error, then
the journal line is accepted.

Post Line Codeunit
This codeunit is responsible for actually writing the journal line to the ledger. It
only posts one Journal Line at a time. It does not look at previous or upcoming
records.

You may notice that the code in the OnRun trigger of this codeunit is inserting
records. The OnRun trigger of the Post Line codeunit is normally never called,
but in prior versions of the product it was. For backward compatibility, the
OnRun trigger loads the temporary Dimensions table with the two global
dimensions and then calls the RunWithCheck function. This is the function that
is normally called by other functions or triggers. It in turn calls the workhorse of
the Post Line routine, the Code function.

Like Check Line, this codeunit skips any empty lines by exiting. This ensures
that empty lines are not inserted into the ledger. The first thing the codeunit does,
if the line is not empty, is to call Check Line to verify that all the needed journal
fields are correct.

Microsoft Navision Development II − C/SIDE Solution Development

Page 98

Next, the codeunit checks the important table relations. This requires reading the
database (using GET), which is why it is done here rather than in Check Line.

Before writing to the ledger, Post Line writes to the register. The first time the
program runs through the Post Line codeunit, it inserts a new record in the
Register table. In every subsequent run through Post Line, the program modifies
the record by incrementing the To Entry No.

Then the codeunit takes the next entry number and the values from the journal
line and puts them into a ledger record. Finally, it can insert the ledger record.

Near the bottom of the Code function is the call to the DimensionManagement
codeunit that copies the dimensions from the temporary Journal Line Dimension
table to the real Ledger Entry Dimension table.

The entry number for this new ledger record is passed into the function to keep
the dimension records associated with this ledger entry. The very last thing that
the codeunit does is to increment the variable that holds the next entry number by
one. Thus, when the codeunit is called again, the next entry number is ready.

When the Post Line codeunit is done, one journal line has been processed, but
more than one ledger record may have been inserted into more than one ledger.

Post Batch Codeunit
This codeunit is responsible for posting the Template and Batch that were passed
to it. Only one record variable for the journal is actually passed in, but the
codeunit starts by filtering down to the template and batch of the record that was
passed in. Then it finds out how many records are in the record set that the record
variable represents. If the answer is none, the codeunit exits without an error, and
it is up to the calling routine to let the user know that there was nothing to post.

The Post Batch codeunit can then begin checking each journal line in the record
set by calling the Check Line codeunit for each line. Once all the lines are
checked, they can be posted by calling the Post Line codeunit for each line. By
then, the codeunit has looped through all the records twice, once for Check Line
and a second time for Post Line. To call the appropriate functions in Check Line
and Post Line, Post Batch must fill in a temporary Journal Line Dimension table
with all of the dimensions for the journal line. It can then pass this temporary
record variable into the RunCheck function of Check Line (or the RunWithCheck
function of Post Line) along with the journal line record variable.

Where Check Line checks consistency of a given line, the Post Batch Codeunit is
responsible for checking the inter-relation of the lines. For example, if the
codeunit is for general journal lines, it may also be responsible for making sure
that the journal lines balance. This usually takes place after they are checked and
before they are posted.

Chapter 4: Managing Posting

Page 99

The codeunit may do other special things depending on the Journal Template.
For recurring journals, the journal lines are updated with new dates based on the
date formula. When a recurring journal line is posted, the codeunit must check
the Description and Document No. fields and perhaps replace any replaceable
parameters with the correct values (%1 = day, %2 = week, %3 = month, and so
on).

If the template is not recurring, the codeunit deletes all the journal lines.

The following diagram outlines the steps in the Posting Routine when Post Batch
is called:

Microsoft Navision Development II − C/SIDE Solution Development

Page 100

Posting Routine − Code Walkthrough
We are going to implement our own posting routine later in the seminar module
using Microsoft Navision Standards. Let's quickly take a look at the Resource
Journal Posting Routine (codeunits 211, 212, and 213), which is used when a
user posts Resource Journals. Let's compare what we just learned about posting
routines to what we see in these codeunits.

Check Line
Design codeunit 211-Res. Jnl.-Check Line. Notice that the OnRun trigger gets
the GL Setup record and then sets a temporary record for the dimensions.
Dimensions will be talked about later in this course.

In the RunCheck function trigger, the first thing you notice is that the codeunit
checks to see if the line is empty. If the line is empty, the codeunit skips further
checking and exits without error.

The codeunit also checks to see if the posting date is within the allowable posting
date from the GL Setup table.

Finally, the Check Line codeunit calls functions from the DimensionManagement
codeunit to verify the dimensions.

If this codeunit goes through without error, then the posting routine continues.

Post Line
Design codeunit 212-Res. Jnl.-Post Line. Notice that the OnRun trigger again
gets the GL Setup record and also sets a temporary record for the dimensions. As
mentioned previously in this chapter, the OnRun trigger contains code for
backward compatibility. Most codeunits call the RunWithCheck function which
then calls the Code function, where most of the posting is done in the posting
routine.

Notice, like the Check Line codeunit, the Post Line codeunit skips any empty
lines by exiting. This ensures that empty lines are not inserted into the ledger.
Next, if the line is not empty, it calls Check Line to verify that all the needed
journal fields are correct.

Next, the codeunit gets the next entry number from the Resource Ledger Entry
table to be used with the resource register table. As mentioned above, before
writing to the ledger, Post Line writes to the register. The codeunit first adds a
new record into the Register table, and then every subsequent run through Post
Line increments the To Entry No.

Then the codeunit takes the next entry number and the values from the journal
line and puts them into a ledger record. Finally, it can insert the ledger record.

After the Ledger is inserted into the table, this codeunit calls the
DimensionManagement codeunit to transfer the dimension lines from the
temporary record to the Ledger entry table.

Chapter 4: Managing Posting

Page 101

Post Batch
Design codeunit 213-Res. Jnl.-Post Batch. This codeunit is responsible for
posting the Resource Template and Resource Batch that were passed to it.

The codeunit starts by filtering to the template and batch of the Resource Journal
Line. If no records are found in this range, Post Batch exits and it is up to the
calling routine (codeunit 271, 272, 273, or 274 in this case) to let the user know
that there was nothing to post.

The Post Batch codeunit then loops and checks each journal line in the record set
by calling the Check Line codeunit. Once all the lines are checked, they enter
another loop which posts the records by calling the Post Line codeunit for each
line. Post Batch must fill in a temporary Journal Line Dimension table with all of
the dimensions for the journal line. It can then pass this temporary record
variable into the RunCheck function of Check Line (or the RunWithCheck
function of Post Line) along with the journal line record variable.

Unlike the General Journal, there are no interdependencies between Resource
Journal lines, so no checks such as checking the balance need to be done here.

Lastly, this codeunit calls the UpdateAnalysisView codeunit to update all of the
Analysis Views.

Document Posting Routines
A document in Microsoft Navision is an easy interface for a user to make many
complicated transactions. In our case, the user uses the seminar registration
document to tie a seminar registration to a number of customers and participants
as well as to comments and seminar charges. The document posting routine for
seminar registration translates this document information into journal entries
which can then be posted to ledger entries.

To understand more clearly how a document posting routine works and what its
components are, look at the example of the sales order posting routine.

Consider the example of a sales order with three sales lines. On Line 1, we are
selling a G/L Account (perhaps this line adds some kind of surcharge or freight).
On Line 2, we are selling an item (for example, a computer). On Line 3, we are
selling a resource (here we are talking about the time that one of our employees
has spent custom-building the computer).

When the user posts the document, the program generates an entry that debits the
Accounts Receivable Account in the G/L, and each line could generate a separate
G/L entry for the amount of that line. At the same time, entries are being made
for the Item and Resource journals, as well as the General journal for the
Customer.

Microsoft Navision Development II − C/SIDE Solution Development

Page 102

When these journal entries are posted, they are posted as if the user had entered
them into the journals. The biggest difference is that the journal records are
posted one at a time, which allows the Sales Post routine to bypass Post Batch
and call Post Line directly.

In the example of a sales order posting, codeunit 12 Gen. Jnl.-Post Line would be
called at least twice, codeunit 22 Item Jnl.-Post Line would be called once and
codeunit 212 Res. Jnl.-Post Line would be called once.

A sales document is posted primarily by codeunit 80 Sales-Post. You can,
however, post an entire batch of sales documents by calling report 297 Batch
Post Sales Invoices. Note that this report is for invoices only. There is a separate
report for each document type.

These reports call codeunit 80 repeatedly for each document. For this to work,
codeunit 80 must not interact with the user. In fact, codeunit 80 is never called
directly by a form. The form calls codeunit 81 Sales-Post (Yes/No) or 82 Sales-
Post + Print or one of the reports mentioned previously. They in turn interact
with the user (getting confirmation or other information) and then call codeunit
80 appropriately.

The following diagram illustrates the theory in document posting:

Chapter 4: Managing Posting

Page 103

Document Posting Routine − Code Walkthrough
Let's focus on codeunit 80, and break it down into some of its major parts.
Assume that the user is shipping and invoicing a Sales Order. Scroll through the
codeunit and identify the sections that perform the following tasks:

• The codeunit starts by determining the document type and validates
the information that appears on the sales header and lines. The
codeunit determines what the posted document numbers are going to
be and updates the header. This section ends with a COMMIT.

• The codeunit locks the appropriate tables.
• The codeunit inserts the Shipment Header and Invoice or Credit

Memo Header.
• The codeunit processes the sales lines. This section starts by clearing

the Posting Buffer (a temporary table based on the Invoice Post.
Buffer table) and ends with the UNTIL that goes with REPEAT,
which loops through all the sales lines. Inside this section, each line
is processed individually.

• Within the REPEAT loop, the codeunit checks each line with its
matching Shipment line (if the line was previously shipped). If the
line type is an Item or a Resource, it is posted through the correct
journal. The line is then added to the posting buffer. It may be
inserted or it may update a row already there. If the line is related to
a job, it posts a journal line through the Job Journal. Then, if there is
no shipment line, it inserts one. Finally, it copies the Sales Line to
the Invoice Line or Credit Memo Line (the posted tables).

• The codeunit can now post all entries in the Posting Buffer to the
General Ledger. These are the Credits that are created from the sale
of the lines. Then the codeunit can post the Debit to the General
Ledger. The customer entry is made to the Sales Receivables
Account. It checks whether there is a balancing account for the
header. This corresponds to an automatic payment for the invoice.

• Lastly, the codeunit updates and/or deletes the Sales Header and
Lines and commits all changes.

Microsoft Navision Development II − C/SIDE Solution Development

Page 104

Documentation in Existing Objects
When you make changes in an existing object, you must create a note in the
Documentation trigger for each modification you make. Usually, this amounts to
one note for each feature. The note heading should contain a reference number,
the date when the modification was completed, the name of the developer
responsible for the modification, the project name and a short description of the
change. Here is an example:

Microsoft Business Solutions

Project: Navision Solution Development II Training
jtd: John T. Doe

No. Date Sign Description

001 01.21.2004 jtd Created
002 05.05.2004 jtd Transfer new field
 Seminar Registration No.

Notice that documentation in an existing object looks much like the
documentation in a new object, except that you create a new reference number
for each modification.

Code Comments
Along with the general comments that you provide in the Documentation trigger,
it is important to provide comments in the code at the lines where you have made
a change. Only do this when you modify an existing object, not when you create
a new object.

The key is to mark the changed code with the same reference number as used in
the Documentation trigger of the object. For example, if you have modified a
single line of code, you should mark it like this:

State := "Employee."Default Work State"; // jtd002

If you have added or modified an entire block of code, you
should mark your change as follows:

// - jtd:002 ---
 JobLedgEntry."Seminar Registration No." := "Seminar
Registration No.";
// + jtd:002 +++

Chapter 4: Managing Posting

Page 105

If, as part of your modification, you want to remove a block of code, you should
mark it as follows:

{ - jtd:002 --- Start Deletion
State := "Employee."Default Work State"; Locality :=
"Employee."Default Work Locality"; "Work Type Code" :=
Employee."Default Work Type Code";
 + jtd:002 +++ End Deletion}

Note that this keeps the old code in place, just commented out. Never delete
Navision base code − comment it out instead.

Performance Issues
When writing large posting routines like this one, it is important to program with
the idea of maximizing performance. There are a number of steps you can take
while programming a solution in Microsoft Navision that helps to improve
performance.

Table Locking
Normally, you do not need to be concerned with transactions and table locking
when developing applications in C/SIDE. There are, however, some situations
where you have to lock a table explicitly. For example, let us suppose that in the
beginning of a function, you inspect data in a table and then use this data to
perform various checks and calculations. Finally, you want to write back a record
based upon the result of this processing. You will want the values that you
retrieved at the beginning to be consistent with the data in the table now. In short,
you cannot allow other users to update the table while your function is busy
doing its calculations.

The solution is to lock the table yourself at the beginning of your function by
using the LOCKTABLE function. This function locks the table until the write
transaction is committed or aborted. This means that other users can read from
the table, but they cannot write to it. Calling the COMMIT function unlocks the
table.

The RECORDLEVELLOCKING property is used to detect whether record level
locking is being used. This property is only used with the SQL Server Option for
Microsoft Navision, which is currently the only server that supports record level
locking.

Microsoft Navision Development II − C/SIDE Solution Development

Page 106

Keys and Queries
When you write a query that searches through a subset of the records in a table,
always carefully define the keys both in the table and in the query so that
Microsoft Navision can quickly identify this subset. For example, the entries for
a specific customer will normally be a small subset of a table containing entries
for all the customers. If Microsoft Navision can locate and read the subset
efficiently, the time it will take to complete the query will only depend on the
size of the subset.

To maximize performance, you must define the keys in the table so that they
facilitate the queries that you have to run. These keys must then be specified
correctly in the queries.

Reducing Impact on the Server
Keeping the processing of transactions on the client as much as possible
minimizes the load on the server and improves performance, particularly when
there are a large number of users. There are several ways to achieve this.

Try to use the COMMIT function as little as possible. This function is handled
automatically by the database for almost all circumstances, so you should almost
never use it.

Limit the use of the LOCKTABLE function to where it is necessary. Remember
that an insert, modify, rename, or delete locks the table automatically, so you do
not need to lock a table for most modifications.

Try to structure your code so that you do not have to look at the return values of
the INSERT, MODIFY or DELETE functions. When you use the return value,
the server has to be notified right away so that a response can be obtained. If you
do not look at them, the server is not notified until something else requires it.

Use the CALCSUMS and CALCFIELDS functions whenever possible to avoid
going through records to add up values.

Reducing Impact on Network Traffic
Consider setting keys and filters and then using MODIFYALL or DELETEALL
functions, which send only one command to the server, rather than getting and
deleting or modifying each of many records, which will send more information
back and forth through the network.

Since CALCSUMS and CALCFIELDS can both take multiple parameters, use
these functions to perform calculations on several fields with one function call.

Chapter 4: Managing Posting

Page 107

Debugging Tools
There are three categories of errors you can meet when you develop applications
in C/AL code: syntax errors, runtime errors and program logic errors.

Syntax errors are errors where the program encounters an unknown identifier, or
where the program expects keywords that are not there, such as an IF or THEN
that is missing. Syntax errors are detected by the compiler.

Runtime errors are not detected by the compiler and only occur when the code is
executed. A good example of this is when division by zero occurs in the code.

A program logic error occurs when the code compiles and runs but does not
function as intended.

Microsoft Navision has tools that help you track down the source of errors and
enable you to see what code has been run.

Debugger
Microsoft Navision provides an integrated debugging tool to help you check and
correct code that does not run smoothly.

The debugger enables you to set breakpoints, which are marks that are set in the
code to tell the debugger to stop execution so that you can examine what is
happening. The Breakpoint on Triggers setting (SHIFT+CTRL+F12) is enabled by
default when you activate the debugger for the first time. Otherwise the code
would be executed normally because there are no breakpoints. The debugger
therefore suspends execution of the code when it reaches the first trigger. At this
point you can set other breakpoints and then disable the Breakpoint on Triggers
option if sp desired. If you do not disable the Breakpoint on Triggers setting, the
debugger will suspend execution of the code at every trigger it reaches.

You can also set or remove breakpoints from the C/AL Editor by either pressing
F9 or clicking TOOLS→DEBUGGER→TOGGLE BREAKPOINTS. Information about
breakpoints is stored in the Breakpoints virtual table when you close the C/AL
Editor.

You can activate the debugger from Microsoft Navision by clicking
TOOLS→DEBUGGER→ ACTIVE (SHIFT+CTRL+F11).

Microsoft Navision Development II − C/SIDE Solution Development

Page 108

In the debugger interface, you find several windows and menus. From the Edit
menu, you can access the Breakpoints dialog box (SHIFT+F9). It displays a list
of the breakpoints that you have set for the object you are debugging. You can
enable, disable, and remove breakpoints in the list. The View menu contains
commands that display the various debugger windows, such as the Variables
window and the Call Stack window. The Debug menu contains commands that
start and control the debugging process, for example, Go, Step Into, Step Over
and Show Next Statement.

The Go command executes code from the current statement until a breakpoint or
the end of the code is reached, or until the application pauses for user input.

The Step Into command executes statements one at a time, and you can decide
how to continue after each statement. The execution steps into any function that
is called, which means that the debugger single-steps through the statements in
the function.

The Step Over command executes statements one at a time, like Step Into, but if
you use this command when you reach a function call, the function is executed
without the debugger stepping through the function instructions.

The Show Next Statement command shows the next statement in your code.

Code Coverage
When you activate the code coverage functionality, the program logs the code
and objects that are run during the time the coverage is activated. This can be
useful when you are customizing Microsoft Navision and want to test your work.
It provides a quick overview of the objects for which code has been executed and
displays the code that has been logged.

To activate code coverage:

1. Click TOOLS→DEBUGGER→CODE coverage. The Code Coverage
window opens.

2. Click Start to begin logging code.

3. When you have completed the transactions you want to monitor,
return to the Code Coverage window, which now contains a list of
any tables, forms, reports, dataports and codeunits that were used.

4. Click Stop.

5. Select an object for which you wish to view the code. Click Code to
open the Code Overview window.

The Code Overview window displays code for the object that you selected in the
Code Coverage window. Lines of code that were executed during the
transaction(s) are shown in black. Lines of code that were not executed are
shown in red.

Chapter 4: Managing Posting

Page 109

Handling Runtime Errors
It is possible to avoid some runtime errors by writing code that handles possible
errors. A typical example of this is the GET function. The return value of the
GET function is a Boolean, so that if the program finds the record in the table,
the function returns TRUE; if the program does not find the record, the function
returns FALSE.

If the GET function is used as it is shown below, a runtime error occurs if the
program cannot find the specified record:

Customer.GET("Customer Number");

If you create statements to handle a possible FALSE result of the GET with a
message or error to the user, no runtime error occurs and the user is able to
understand how to correct the problem. You would handle the runtime error by
writing code in the ELSE branch of the code below:

IF Customer.GET("Customer Number") THEN
....
ELSE
....

Client Monitor
The Client Monitor, which is accessed by clicking Tools, Client Monitor, is
actually a virtual table called Monitor, which you can use to get an overview of
the time consumption of specific operations. This tool can be quite valuable
when you are optimizing the performance of your solution.

In the Client Monitor window, you can use the Options tab to specify the kind of
information gathered by the Client Monitor. The Options tab also contains
advanced parameters that are only available with the SQL Server Option. Refer
to the Application Designer's Guide for more information on these parameters.

Microsoft Navision Development II − C/SIDE Solution Development

Page 110

Test Your Skills − Managing Posting − Diagnosis

Description
Now that we have transaction data, our next task is to use the completed
transaction data to create ledger entries from which we can view history, create
statistics and create invoices. We will, of course, be doing this with a posting
routine. Our client's functional requirements describe their posting needs in this
way:

When a seminar is completed, the seminar should be posted as a job, with
additional seminar-specific information.

Use Cases
We can describe the task of creating posting routines for the seminar module as
the following use case:

• Managing Seminar Registration Posting

The following diagram illustrates the use case:

Chapter 4: Managing Posting

Page 111

Implementation of Use Case 1 − Managing Seminar
Registration Posting

Managing Seminar Registration Posting − Analysis
Our client's functional requirements describe the registration posting in the
following way:

When a seminar is completed, the seminar should be posted as a job with
additional seminar-specific information.

We therefore need to post seminars as jobs, but we must also have a separate
ledger with seminar-specific information. We must also ensure that posting the
registration enables us to invoice customers for participation in seminars.

Purpose
The purpose of posting seminar registration is to record that a seminar took place,
to record the participants who took part and to enable us to invoice customers.

Preconditions
Information must exist for seminar registrations and customers.

Postconditions
After a seminar registration posting, a posted registration document, ledger
entries and registers will exist for the posted seminar registration.

Main Scenario
Upon completion of a seminar, seminar managers verify the participant list with
the trainer and post the registration document.

Microsoft Navision Development II − C/SIDE Solution Development

Page 112

Activity Diagram

Managing Seminar Registration Posting − Design
The basic design for posting seminar registrations is similar to that of standard
journal posting. Since we are also posting a document, we must create additional
posted document tables and forms to contain historical information.

The following diagram illustrates how the tables interact.

Chapter 4: Managing Posting

Page 113

GUI Design
The forms for the seminar registration posting and the navigation between them
reflects the relationships shown in the previous diagram. We start by defining the
simplest forms first so that they can be integrated with the more complex forms
at the end of the GUI design.

Source Code Setup (Form 279): Add one new field to the form, Seminar, as
shown below.

Seminar Ledger Entries (Form 123456721): This form displays the seminar
ledger entries.

Microsoft Navision Development II − C/SIDE Solution Development

Page 114

Seminar Registers (Form 123456722): This form displays the registers created
when seminar registrations are posted.

Posted Seminar Charges (Form 123456739): This form shows the posted
seminar charges from a posted seminar registration.

Chapter 4: Managing Posting

Page 115

Posted Seminar Registration (Form 123456734) and Posted Seminar Reg.
Subform (Form 123456735): These forms show the posted seminar registration
header and line information.

GENERAL TAB

SEMINAR ROOM TAB

Microsoft Navision Development II − C/SIDE Solution Development

Page 116

This form shows the posted seminar registration line information.

INVOICING TAB

Posted Seminar Reg. List (Form 123456736): This form displays a list of
posted seminar registrations.

Chapter 4: Managing Posting

Page 117

Seminar Registration (Form 123456710): Add a Posting button to this form as
shown below:

Seminar Registration List (Form 123456713): Add a Posting button to this
form as shown below:

Functional Design
As in all journal postings, you need journal posting codeunits to check Seminar
Journal lines and to post them. However, unlike some posting codeunits (e.g.
General Journal), you do not need a codeunit to post a batch of journal lines
because you will not be posting batches.

Check Line: This codeunit helps ensure the data validity of a seminar journal line
before it is sent to the posting routine. The codeunit should check that the journal
line is not empty and that there are values for the Posting Date, Job No.,
Instructor Code and Seminar No. Depending on whether the line is posting an
Instructor, a Room or a Participant, the codeunit should check that the key fields
are not blank. The codeunit should check that the dates are valid.

Microsoft Navision Development II − C/SIDE Solution Development

Page 118

Post Line: This codeunit performs the posting of the Seminar Journal Line. The
codeunit should create a Seminar Ledger Entry per Seminar Journal Line and
create a Seminar Register to track which entries were created during the posting.

You need to modify the Job Jnl.-Post codeunit to ensure that the Seminar
Registration No. is recorded in the Job Ledger Entry.

You need two codeunits to enable the posting of the Seminar Registration
document:

Seminar Post: This codeunit does the posting of an entire seminar registration,
including the job posting, and seminar posting. The codeunit should transfer the
comment records to new comment records corresponding to the posted
document, and it should copy charges to new tables containing posted charges.
The codeunit should create a new Posted Seminar Registration Header record as
well as Posted Seminar Registration Lines. The codeunit should then run the job
journal posting, and it should post seminar ledger entries for each participant, for
the instructor and for the room. Finally, the codeunit should delete the records
from the transaction tables, including the header, lines, comment lines, and
charges.

Seminar Post (Y/N): This codeunit interacts with the user, asking whether they
really want to post the registration. If the user answers Yes, the codeunit runs the
Seminar Post codeunit.

Table Design
The following tables are required to implement our posting routines:

• Table 123456731 Seminar Journal Line
• Table 123456732 Seminar Ledger Entry
• Table 123456733 Seminar Register
• Table 123456721 Posted Seminar Charge
• Table 123456719 Posted Seminar Reg. Line
• Table 123456718 Posted Seminar Reg. Header

Add fields to the following Microsoft Navision tables:

• Table 210 Job Journal Line
• Table 169 Job Ledger Entry
• Table 242 Source Code Setup

Chapter 4: Managing Posting

Page 119

Managing Seminar Registration Posting − Development
As with the previous use case, begin development of the posting by creating the
tables and forms for the journal, ledger, register and posted documents.

Exercise 9 − Creating the Tables and Forms for Seminar
Registration Posting

1. Source codes are used in posting tables to identify where entries
originated. Add the additional field to table 242 Source Code Setup
as follows:

No. Field Name Type Length Comment
123456
700

Seminar Code 10 Relation to the Source Code
table.

2. Modify form 279 Source Code Setup by adding the new Seminar

field as shown in the GUI design.

3. Create table 123456731 Seminar Journal Line with the following
fields:

No. Field Name Type Length Comment
1 Journal

Template
Name

Code 10

2 Line No. Integer
3 Seminar No. Code 20 Relation to Seminar table.
4 Posting Date Date
5 Document

Date
Date

6 Entry Type Option Options: Registration,
Cancellation.

7 Document
No.

Code 20

8 Description Text 50
9 Bill-to

Customer
No.

Code 20 Relation to Customer table.

10 Charge Type Option Options: Instructor, Room,
Participant, Charge.

Microsoft Navision Development II − C/SIDE Solution Development

Page 120

No. Field Name Type Length Comment
11 Type Option Options: Resource,G/L Account
12 Quantity Decimal DecimalPlaces = 0:5

13 Unit Price Decimal AutoFormatType = 2
14 Total Price Decimal AutoFormatType = 1
15 Participant

Contact No.
Code 20 Relation to Contact table.

16 Participant
Name

Text 50

17 Chargeable Boolean Initial value is Yes.
18 Room Code Code 10 Relation to Seminar Room

table.
19 Instructor

Code
Code 10 Relation to Instructor table.

20 Starting
Date

Date

21 Seminar
Registration
No.

Code 20

22 Job No. Code 20 Relation to Job table.
23 Job Ledger

Entry No.
Integer Relation to Job Ledger Entry

table.
24 Source Type Option Options: , Seminar.
25 Source No. Code 20 If Source Type=Seminar,

relation to Seminar table.
26 Journal

Batch Name
Code 10

27 Source Code Code 10 Relation to Source Code table.
28 Reason

Code
Code 10 Relation to Reason Code table.

29 Posting No.
Series

Code 10 Relation to No. Series table.

The primary key for this table is Journal Template Name, Journal
Batch Name, Line No.

4. Create a new function in table 123456731 Seminar Journal Line with
a return type of Boolean, called EmptyLine. Enter one line of code in
the function trigger so that the function returns TRUE if the Seminar
No. is blank.

Chapter 4: Managing Posting

Page 121

5. Create table 123456732 Seminar Ledger Entry with the following
fields:

No. Field Name Type Length Comment
1 Entry No. Integer
2 Seminar No. Code 20 Relation to Seminar table.
3 Posting Date Date
4 Document

Date
Date

5 Entry Type Option Options: Registration,
Cancellation.

6 Document
No.

Code 20

7 Description Text 50
8 Bill-to

Customer
No.

Code 20 Relation to Customer table.

9 Charge Type Option Options: Instructor, Room,
Participant, Charge.

10 Type Option Options: Resource,G/L Account.
11 Quantity Decimal DecimalPlaces = 0:5

12 Unit Price Decimal AutoFormatType = 2
13 Total Price Decimal AutoFormatType = 1
14 Participant

Contact No.
Code 20 Relation to Contact table.

15 Participant
Name

Text 50

16 Chargeable Boolean Initial value is Yes.
17 Room Code Code 10 Relation to Seminar Room table.
18 Instructor

Code
Code 10 Relation to Instructor table.

19 Starting Date Date
20 Seminar

Registration
No.

Code 20

21 Job No. Code 20 Relation to Job table.

Microsoft Navision Development II − C/SIDE Solution Development

Page 122

No. Field Name Type Length Comment
22 Job Ledger

Entry No.
Integer Relation to Job Ledger Entry

table.
23 Remaining

Amount
Decimal FlowField; CalcFormula looks up

the Remaining Amount in the
corresponding Job Ledger Entry.
AutoFormatType = 1. Must not
be editable.

24 Source Type Option Options: , Seminar.
25 Source No. Code 20 If Source Type=Seminar, relation

to Seminar table.
26 Journal Batch

Name
Code 10

27 Source Code Code 10 Relation to Source Code table.
28 Reason Code Code 10 Relation to Reason Code table.
29 No. Series Code 10 Relation to No. Series table.
30 User ID Code 20 Relation to User table. Table

relation should not be tested.

6. Enter code in the appropriate trigger so that when the user performs a
lookup on the User ID field, the program runs the LookupUserID
function from the LoginManagement codeunit.

7. Set the properties to specify form 123456721 as the lookup and drill
down form for table 123456732.

8. The primary key for table 123456732 is Entry No., with one
secondary key of Seminar No., Posting Date and a second
secondary key of Bill-to Customer No., Seminar Registration No.,
Charge Type, Participant Contact No.

9. Create table 123456733 Seminar Register with the following fields:

No. Field Name Type Length Comment
1 No. Integer
2 From Entry

No.
Integer Relation to Seminar Ledger

Entry table.
3 To Entry No. Integer Relation to Seminar Ledger

Entry table.
4 Creation

Date
Date

5 Source Code Code 10 Relation to Source Code table.

Chapter 4: Managing Posting

Page 123

No. Field Name Type Length Comment
6 User ID Code 20 Relation to User table. Table

relation should not be tested.
7 Journal Batch

Name
Code 10

The primary key for table 123456733 is No., with one secondary key
of Creation Date and a second secondary key of Source Code,
Journal Batch Name, Creation Date.

10. Enter code in the appropriate trigger so that when the user performs a
lookup on the User ID field, the program runs the LookupUserID
function from the LoginManagement codeunit.

11. Set the properties to specify form 123456722 as the lookup and drill
down form for table 123456733.

12. Create form 123456721 Seminar Ledger Entries with the fields
Posting Date, Document No., Document Date (not visible), Entry
Type, Seminar No., Description, Bill-to Customer No., Charge
Type, Type, Quantity, Unit Price, Total Price, Remaining
Amount, Chargeable, Participant Contact No., Participant
Name, Instructor Code, Starting Date, Seminar Registration No.,
Job No., Job Ledger Entry No. and Entry No. as shown in the GUI
design. Set the property to make this form not editable.

With the new tables, you can now create the codeunits to post seminar-specific
information from the seminar journal to the seminar ledger. These codeunits will
be similar to other posting codeunits, except that we do not need a Post Batch
codeunit for the document posting.

Exercise 10 − Creating the Codeunits and Form for Seminar
Journal Posting
We will first create a codeunit to show the Seminar Ledger Entry form for a set
of entries.

1. Create codeunit 123456734 Seminar Reg.-Show Ledger. Set the
property to specify Seminar Register as the source table for this
codeunit.

2. Enter code in the appropriate trigger so that when the program runs
the codeunit, it runs the Seminar Ledger Entries form, showing only
those entries between the From Entry No. and To Entry No. on the
Seminar Register.

HINT: Look at Codeunit 275 Res.Reg.-Show Ledger.

Microsoft Navision Development II − C/SIDE Solution Development

Page 124

The next step is to create the Check Line codeunit to help ensure data validity
before posting.

3. Create codeunit 123456731 Seminar Jnl.-Check Line. Set the
property to specify Seminar Journal Line as the source table for this
codeunit.

4. In codeunit 123456731, create a function called RunCheck that takes
a parameter that is passed by reference. This parameter is a record
variable of the Seminar Journal Line table, called SemJnlLine.

5. Enter code in the appropriate trigger so that when the program runs
codeunit 123456731, it runs the RunCheck function for the current
record.

6. Enter code in the RunCheck function trigger so that the function
performs the following tasks:

HINT: Look at the RunCheck function in Codeunit 211 Res.Jnl.-Check Line.

– Tests whether the Seminar Journal Line is empty using the
EmptyLine function. If the line is empty, the function exits.

– Tests that the Posting Date, Job No., and Seminar No. fields
are not empty.

– Depending on the value of the Charge Type, tests that the
Instructor Code, Room Code and Participant Contact No. are
not empty.

– If the line is Chargeable, tests that the Bill-to Customer No. is
not blank.

– Shows an error if the Posting Date is a closing date.
– Tests that the Posting Date is between the Allow Posting From

and Allow Posting To dates on the user's User Setup record; or
if those fields are empty on the User Setup record, tests that the
Posting Date is between the Allow Posting From and Allow
Posting To dates on the G/L Setup record. The function shows
an error if the Posting Date is not between the dates on either of
these records.

– Shows an error if the Document Date is a closing date.

Now create the Post Line codeunit to post Seminar Journal lines.

Chapter 4: Managing Posting

Page 125

7. Create codeunit 123456732 Seminar Jnl.-Post Line.

– Set the property to specify Seminar Journal Line as the source
table for this codeunit.

– Define the following global variables for the codeunit:

Name Data Type Subtype Length
SemJnlLine Record Seminar Journal Line
SemLedgEntry Record Seminar Ledger Entry
SemReg Record Seminar Register
SemJnlCheckLine Codeunit Seminar Jnl.-Check Line
NextEntryNo Integer

8. Create a function called GetSemReg that takes as a parameter a

record variable for the Seminar Register table, called NewSemReg.
This parameter is passed by reference.

9. Create a function called RunWithCheck that takes as a parameter a
record variable for the Seminar Journal Line, called SemJnlLine2,
which is passed by reference.

10. Create a function called Code.

11. Enter code in the appropriate trigger so that when the program runs
codeunit 123456732 Seminar Jnl.-Post Line, it runs the
RunWithCheck function for the current record.

12. Enter code in the GetSemReg function trigger so that the function
sets the NewSemReg parameter to the SemReg record.

13. Enter code in the RunWithCheck function trigger so that the function
copies the SemJnlLine from the SemJnlLine2 record, runs the Code
trigger and copies the SemJnlLine2 record from the SemJnlLine.

14. Enter code in the Code function trigger so that the function performs
the following tasks:

HINT: Look at the Code function in Codeunit 212 Res. Jnl.-Post Line.

– Tests whether the SemJnlLine is empty using the EmptyLine
function. If it is empty, the function exits.

– Runs the RunCheck function of the SemJnlCheckLine codeunit.
– If the NextEntryNo is 0, the function locks the SemLedgEntry

table and sets the NextEntryNo to one more than the Entry No.
of the last record in the SemLedgEntry table.

Microsoft Navision Development II − C/SIDE Solution Development

Page 126

– If the Document Date is empty, the function sets the Document
Date to the Posting Date.

– Creates or updates the SemReg record, depending on whether or
not the register record has been created for this posting. The
function does this by checking whether the No. of the SemReg
record is 0. If so, the function locks the SemReg table. If the
function either cannot find the last record of the SemReg table,
or if the To Entry No. is not 0, the function creates a new
SemReg record, fills the fields as appropriate and inserts the new
record. Regardless of whether the function creates a new record
or not, the function sets the To Entry No. for the record to the
NextEntryNo and modifies the record.

– Creates a new SemLedgEntry record, fills the fields as
appropriate from the SemJnlLine record, sets the Entry No. to
NextEntryNo, inserts the new record and increments
NextEntryNo by 1.

Now create the Seminar Registers form from which the seminar registers can be
viewed.

15. Create form 123456722 Seminar Registers with fields No., Creation
Date, User ID, Source Code, Journal Batch Name, From Entry
No. and To Entry No. as shown in the GUI design.

– Set the property to specify that this form is not editable.
– Add a menu button and menu item to the form as follows:

Menu Button Option Comment
Register Seminar Ledger Runs the codeunit 123456734

Seminar Reg.-Show Ledger.

One of the requirements specified by the client was that the seminar registration
should post as a job with additional seminar-specific information. We have just
created the journals and codeunits to cover the seminar-specific information, so
now we need to modify the tables, forms and codeunits for posting job journals
to allow us to post seminar registrations as jobs.

Exercise 11 − Modifying the Tables, Forms and Codeunits for
Job Posting

1. Add a new field to table 210 Job Journal Line as follows:

No. Field Name Type Length Comment
123456700 Seminar

Registration
No.

Code 20

Chapter 4: Managing Posting

Page 127

2. Add a new field to table 169 Job Ledger Entry as follows:

No. Field Name Type Length Comment
123456700 Seminar

Registration
No.

Code 20

3. In codeunit 202 Job Jnl.-Post Line, enter code into the Code function

trigger so that when the function is filling the JobLedgEntry fields, it
fills the ledger's Seminar Registration No. field from the Job Journal
Line.

Now create the tables and forms that will be used to store posted seminar
registration information.

Exercise 12 − Creating the Tables and Forms for Posted
Information

1. Create table 123456721 Posted Seminar Charge with the following
fields:

No. Field Name Type Length Comment
1 Seminar

Registration
No.

Code 10 Relation to table 123456718.
Must not be blank.

2 Line No. Integer
3 Job No. Code 20 Relation to Job table.
4 Type Option Options: Resource, G/L

Account.
5 No. Code 20 If Type=Resource, relation to

the Resource table. If
Type=G/L Account, relation to
the G/L Account table.

6 Description Text 50
7 Quantity Decimal Decimal Places=0:5
8 Unit Price Decimal AutoFormatType = 2

Minimum value is 0.
9 Total Price Decimal AutoFormatType=1

Must not be editable.
10 To Invoice Boolean Initial value is Yes.

Microsoft Navision Development II − C/SIDE Solution Development

Page 128

No. Field Name Type Length Comment
11 Bill-to

Customer
No.

Code 20 Relation to Customer table.

12 Unit of
Measure
Code

Code 10 If Type=Resource, relation to
the Code field of the Resource
Unit of Measure table, where
the Resource No. = No.;
otherwise, relation to the Unit
of Measure table.

13 Gen. Prod.
Posting
Group

Code 10 Relation to Gen. Product
Posting Group table.

14 VAT Prod.
Posting
Group

Code 10 Relation to VAT Product
Posting Group table.

15 Qty. per Unit
of Measure

Decimal

16 Registered Boolean Must not be editable.

 The primary key for table 123456721 Posted Seminar Charge is
Seminar Registration No., Line No. with a secondary key of Job
No.

2. Create form 123456739 Posted Seminar Charges with the fields
Type, No., Description, Bill-to Customer No., To Invoice, Unit of
Measure Code, Quantity, Unit Price and Total Price as shown in
the GUI design. Set the property to specify that the form is not
editable.

3. Create table 123456719 Posted Seminar Reg. Line with the
following fields:

No. Field Name Type Length Comment
1 Document

No.
Code 20 Relation to table 123456718

Posted Seminar Reg. Header.
2 Line No. Integer
3 Bill-to

Customer
No.

Code 20 Relation to Customer table.

4 Participant
Contact No.

Code 20 Relation to Contact table.

5 Participant
Name

Text 50 Flowfield based on the
Participant Contact No. Must
not be editable.

Chapter 4: Managing Posting

Page 129

No. Field Name Type Length Comment
6 Register Date Date Must not be editable.
7 To Invoice Boolean Initial value is Yes.
8 Participated Boolean
9 Confirmation

Date
Date Must not be editable.

10 Seminar
Price

Decimal AutoFormatType = 2

11 Line
Discount %

Decimal Decimal places 0:5. The
minimum value is 0, and the
maximum is 100.

12 Line
Discount
Amount

Decimal AutoFormatType = 1

13 Amount Decimal AutoFormatType = 1
14 Registered Boolean Must not be editable.

The primary key for this table is Document No., Line No.

4. Create table 123456718 Posted Seminar Reg. Header with the

following fields:

No. Field Name Type Length Comment
1 No. Code 20
2 Starting Date Date
3 Seminar No. Code 10 Relation to the Seminar table.
4 Seminar

Name
Text 50

5 Instructor
Code

Code 10 Relation to Instructor table.

6 Instructor
Name

Text 50 FlowField; The CalcFormula
should look up the Name field
on the Instructor table. Must not
be editable.

7 Duration Decimal DecimalPlaces = 0:1
8 Maximum

Participants
Integer

9 Minimum
Participants

Integer

Microsoft Navision Development II − C/SIDE Solution Development

Page 130

No. Field Name Type Length Comment
10 Room Code Code 20 Relation to Seminar Room

table.
11 Room Name Text 30
12 Room

Address
Text 30

13 Room
Address2

Text 30

14 Room Post
Code

Code 20 Relation to Post Code table.
There should be no validation
or testing of the table relation.

15 Room City Text 30
16 Room Phone

No.
Text 30

17 Seminar
Price

Decimal AutoFormatType=1

18 Gen. Prod.
Posting
Group

Code 10 Relation to Gen. Product
Posting Group table.

19 VAT Prod.
Posting
Group

Code 10 Relation to VAT Product
Posting Group table.

20 Comment Boolean FlowField; The CalcFormula
should check whether lines
exist on the Seminar Comment
Line table for the current Posted
Seminar Registration. Must not
be editable.

21 Posting Date Date
22 Document

Date
Date

23 Job No. Code 20 Relation to Job table.
24 Reason Code Code 10 Relation to Reason Code table.
25 No. Series Code 10 Relation to No. Series table.
26 Registration

No. Series
Code 10 Relation to No. Series table.

27 Registration
No.

Code 20

29 User ID Code 20 Relation to User table. Relation
should not be tested.

30 Source Code Code 10 Relation to Source Code table.

Chapter 4: Managing Posting

Page 131

 The primary key for table 123456718 Posted Seminar Reg. Header is
No. with a secondary key of Room Code. The sum index field for the
secondary key is Duration.

– Set the property to specify form 123456736 as the lookup form
for the table.

NOTE: The field numbers in the Posted Seminar Reg. Header are set to match those of
the Seminar Registration Header table even though they are not using all the same
fields. This is so the TRANSFERFIELDS function, which relies on Field No., can be
used when copying.

5. Create form 123456735 Posted Seminar Reg. Subform with the
fields Bill-to Customer No., Participant Contact No., Participant
Name, Participated, Register Date, Confirmation Date, To
Invoice, Registered, Seminar Price, Line Discount %, Line
Discount Amount and Amount as shown in the GUI design.

– Set the width, height and positioning properties for the subform
so that there is no empty space around the table box.

– Set the properties for the Line Discount % and Line Discount
Amount so that they are blank if the value is 0.

– Set the property to specify that the form is not editable.
– Set the property to specify that the program automatically creates

a new key when a new line is inserted.

6. Create form 123456734 Posted Seminar Registration as shown in the
GUI design.

– Set the property to specify that the form is not editable.
– Add a subform control to the form and set the control properties

so that the subform control is the same size as the subform form.
Set the subform properties to specify an ID for the form and the
proper link to the table.

7. Add a menu button and menu items to form 123456734 as follows:

Menu Button Option Comment
Registration List (F5) Opens the lookup form.
 Comments Opens the form 123456706 Seminar

Comment Sheet showing the corresponding
records. The link should run when the form
is updated.

 <Separator>
 Charges Opens the form 123456739 Posted Seminar

Charges showing the corresponding records.
The link should run when the form is
updated.

Microsoft Navision Development II − C/SIDE Solution Development

Page 132

– Add a command button next to the No. field to provide access to
the Comment Sheet for the corresponding record. Set the
RunFormLink property for this button so that only the comments
corresponding to the selected Posted Seminar Registration are
displayed.

HINT: Copy the command button and picture box from the existing form 21 Customer
Card and paste them into your new form.

– Enter code in the appropriate trigger so that after the form gets
the record, the program releases the filter on the No. field of the
Posted Seminar Header table.

8. Create form 123456736 Posted Seminar Reg. List with the fields

No., Starting Date, Seminar No., Seminar Name, Duration,
Maximum Participants and Room Code as shown in the GUI
design.

– Set the property to specify that the form is not editable.
– Add the menu button and menu item to the form as follows:

Menu Button Option Comment
Registration Card (SHIFT + F5) Opens the form 123456734 Posted

Seminar Registration for the selected
record.

You are now ready to create our document posting routine.

Exercise 13 − Creating the Codeunits for Document Posting
As shown in the functional design, you need two codeunits to handle the
document posting. The first will be the codeunit that actually does the work of
generating journal lines and running the posting routine, and the second will be
the codeunit that interacts with the user.

The first codeunit will be the Seminar-Post codeunit.

1. Create codeunit 123456700 Seminar-Post.

Chapter 4: Managing Posting

Page 133

2. Define the following global variables for the codeunit:

Name DataType Subtype Length
SemRegHeader Record Seminar Registration

Header

SemRegLine Record Seminar Registration
Line

PstdSemRegHeader Record Posted Seminar Reg.
Header

PstdSemRegLine Record Posted Seminar Reg.
Line

SemCommentLine Record Seminar Comment Line
SemCommentLine2 Record Seminar Comment Line
SemCharge Record Seminar Charge
PstdSemCharge Record Posted Seminar Charge
SemRoom Record Seminar Room
Instr Record Instructor
Job Record Job
Res Record Resource
Cust Record Customer
JobLedgEntry Record Job Ledger Entry
SemLedgEntry Record Seminar Ledger Entry
JobJnlLine Record Job Journal Line
SemJnlLine Record Seminar Journal Line
SourceCodeSetup Record Source Code Setup
JobJnlPostLine Codeunit Job Jnl.-Post Line
SemJnlPostLine Codeunit Seminar Jnl.-Post Line
NoSeriesMgt Codeunit NoSeriesManagement
ModifyHeader Boolean
Window Dialog
SrcCode Code 10
LineCount Integer
JobLedgEntryNo Integer
SemLedgEntryNo Integer

Microsoft Navision Development II − C/SIDE Solution Development

Page 134

3. Set the property to specify Seminar Registration Header as the
source table for this codeunit.

4. Create a function called CopyCommentLines and set the property for
this function to specify it as a local function. This function has the
following four parameters:

– An integer variable called FromDocumentType
– An integer variable called ToDocumentType
– A code variable with length 20 called FromNumber
– A code variable with length 20 called ToNumber

5. Create a function called CopyCharges and set the property to specify

it as a local function. This function has two parameters: a code
variable with length 20 called FromNumber and a code variable with
length 20 called ToNumber.

6. Create a function called PostJobJnlLine with a return type of Integer.
Set the property to specify it as a local function. This function has
one parameter of an option variable called ChargeType with the
options Participant, Charge.

7. Create a function called PostSeminarJnlLine with a return type of
integer. Set the property to specify it as a local function. This
function has one parameter of an option variable called ChargeType
with the options Instructor, Room, Participant, Charge.

8. Create a function called PostCharge and set the property to specify it
as a local function.

9. Enter code in the CopyCommentLines function trigger so that this
function finds records in the Seminar Comment Line table that
correspond to the FromDocumentType and FromNumber values that
were passed as parameters. For each record the function finds, the
function creates a new Seminar Comment Line record that is a copy
of the old record, except that the function sets the Document Type
and No. to the ToDocumentType and ToNumber.

10. Enter code in the CopyCharges function trigger so that the function
finds all Seminar Charge records that correspond to the
FromNumber. For each record found, the function transfers the
values to a new Posted Seminar Charge record, using the ToNumber
as the Seminar Registration No.

Chapter 4: Managing Posting

Page 135

11. Enter code in the PostJobJnlLine function trigger so that the function
performs the following tasks:

– Gets the Instructor, Resource, and Customer records that
correspond to the Seminar Registration Header record.

– Creates a new Job Journal Line record and fills the fields
appropriately. The Gen. Bus. Posting Group comes from the
Customer record. The Entry Type is Usage. The Document No.
and the Seminar Registration No. are both the No. from the
Posted Seminar Reg. Header. The Source Code is the value in
the SrcCode variable. The Source Currency Total Cost is the
Seminar Price from the Seminar Registration Line.

– If the ChargeType is Participant, certain fields are filled as
follows: the Description in the Job Journal Line is the
participant's name, the No. is the instructor's Resource No.,
Chargeable is the To Invoice value from the registration line,
the quantity fields are 1, the cost fields are 0 and the price fields
are taken from the Amount field on the registration line.

– If the ChargeType is Charge, certain fields are filled as follows:
the Description in the Job Journal Line is the Description from
the Seminar Charge record. If the Type from the Seminar
Charge is Resource, the journal line's Type is Resource and the
Unit of Measure Code and Qty. per Unit of Measure are the
corresponding values from the Seminar Charge record. If the
Type of the Seminar Charge is G/L Account, the journal line's
Type is G/L Account, Chargeable is the To Invoice value on
the Seminar Charge record, the Quantity (Base) is 1, the Unit
Cost is 0, the Total Cost is 0, and the No., Quantity, Unit Price
and Total Price are the corresponding values from the Seminar
Charge record.

– Runs the Job Jnl.-Post Line codeunit with the newly created Job
Journal Line.

– Exits and returns the Entry No. of the last Job Ledger Entry
record in the table.

12. Enter code in the PostSeminarJnlLine function trigger so that the

function performs the following tasks:

– Creates a new Seminar Journal Line and fills the fields as
appropriate from the Seminar Registration Header, Posted
Seminar Reg. Header and parameter values.

– If the ChargeType is Instructor, certain fields are filled as
follows: the Description is the instructor's Name, the Type is
Resource, Chargeable is FALSE and the Quantity is the
Duration from the registration header.

Microsoft Navision Development II − C/SIDE Solution Development

Page 136

– If the ChargeType is Room, certain fields are filled in as
follows: the Description is the room's Name, the Type is
Resource, Chargeable is FALSE, and the Quantity is the
Duration from the registration header.

– If the ChargeType is Participant, certain fields are filled in as
follows: the Bill-to Customer No., Participant Contact No.
and Participant Name values come from the corresponding
fields on the registration line, the Description is the Participant
Name on the registration line, the Type is Resource,
Chargeable comes from the To Invoice field on the registration
line and Quantity is 1. The Unit Price and Total Price come
from the Amount field on the registration line.

– If the ChargeType is Charge, certain fields are filled in as
follows: the Description, Bill-to Customer No., Type,
Quantity, Unit Price and Total Price values all come from the
corresponding fields on the Seminar Charge record. Chargeable
comes from To Invoice on the Seminar Charge record.

– Runs the Seminar Jnl.-Post Line codeunit with the newly created
Seminar Journal Line.

– Exits with the Entry No. of the last Seminar Ledger Entry record
in the table.

13. Enter code in the PostCharge function trigger so that the function

performs the following tasks:

– For each record in the Seminar Charge table that corresponds
with the Seminar Registration Header, the function sets the
JobLedgEntryNo to the result of the PostJobJnlLine function
(run with a parameter of 1) and runs the PostSeminarJnlLine
function (with a parameter of 3).

– Sets the JobLedgEntryNo to 0.

14. Enter code in the appropriate trigger so that when the program runs
this codeunit, the codeunit performs the following tasks:

– Clears all variables and sets the SemRegHeader variable to the
current record.

– Tests that the Posting Date, Document Date, Starting Date,
Seminar Code, Duration, Instructor Code, Room Code and
Job No. fields on the registration line are not empty. Tests that
the Status is Closed.

– Gets the Seminar Room and Instructor records that correspond to
the registration header and tests for both of them that the
Resource No. field is not empty.

– Gets the Seminar Registration Line records that correspond to
the registration header and shows an error message if no records
are found.

Chapter 4: Managing Posting

Page 137

– Opens a dialog window to keep the user informed of the
progress.

– If the Posting No. is blank on the registration header, tests that
the Posting No. Series is not blank and runs the GetNextNo
function of the NoSeriesManagement codeunit.

– Modifies the header if necessary and performs a commit.
– If record level locking applies, locks the Seminar Registration

Line and Seminar Ledger Entry tables and finds the last Seminar
Ledger Entry record.

– Sets the SrcCode variable to the Seminar value in the Source
Code Setup table.

– Creates a new Posted Seminar Reg. Header record and transfers
fields from the Seminar Registration Header record to the new
record.

HINT: Use the TRANSFERFIELDS function to do this.

– In the Posted Seminar Reg. Header record, sets the No. to the
Posting No. from the registration header, sets the Registration
No. Series to the No. Series of the registration header and sets
the Registration No. to the No. of the registration header.

– Updates the dialog window.
– Sets the Source Code and User ID fields on the Posted Seminar

Reg. Header record before inserting the record.
– Runs the CopyCommentLines and CopyCharges functions.
– Resets the filter on the Seminar Registration Line table to get the

records corresponding to the Seminar Registration Header
record.

– For each registration line found, the function updates the dialog
window with an updated line count. The function then tests that
the Bill-to Customer No. and Participant Contact No. are not
blank. If To Invoice is FALSE, the function sets the Seminar
Price, Line Discount %, Line Discount Amount and Amount
to 0. The function then sets the JobLedgEntryNo variable to the
result of the PostJobJnlLine function and the SemLedgEntryNo
variable to the result of the PostSeminarJnlLine function. The
function then creates a new Posted Seminar Reg. Line record and
transfers the fields from the Seminar Registration Line record to
the new posted record. The function sets the Document No. field
of the new record to the No. of the Posted Seminar Reg. Header.
Finally, the function inserts the new record and sets the
JobLedgEntryNo and SemLedgEntryNo variables to 0.

– Runs the PostCharge, PostSeminarJnlLine (to post the instructor)
and PostSeminarJnlLine (to post the room) functions.

Microsoft Navision Development II − C/SIDE Solution Development

Page 138

– If record level locking does not apply, locks the Seminar
Registration Line table.

– Deletes the Seminar Registration Header and all corresponding
Seminar Registration Line records, Seminar Comment Line
records and Seminar Charge records.

– Sets the current record to the Seminar Registration Header
record.

– To enable the user to post the seminar registration, we need a
codeunit that interacts with the user and runs the Seminar-Post
codeunit based on the user's input.

15. Create codeunit 123456701 Seminar-Post (Yes/No).

16. Define the following global variables for the codeunit:

Name DataType Subtype Length
SemRegHeader Record Seminar Registration

Header

SeminarPost Codeunit Seminar-Post

17. Set the property to specify Seminar Registration Header as the
source table for this codeunit.

18. Create a function called Code and set the property to specify that it is
a local function.

19. Enter code into the Code function trigger so that the function
confirms that the user wants to post the registration. If the user
answers No, the function exits. If the user answers Yes, the function
runs the Seminar-Post codeunit with the Seminar Registration
Header record. The function performs a commit at the end.

20. Enter code into the appropriate trigger so that when the program runs
this codeunit, the codeunit copies the current record into the Seminar
Registration Header record, runs the Code function and copies the
Seminar Registration Header into the current record.

Chapter 4: Managing Posting

Page 139

Finally, you need to modify two forms to enable the registration posting.

21. Add a Posting menu button and menu item to form 123456710
Seminar Registration as follows:

Menu Button Option Comment
Posting Post (F11) Runs codeunit 123456701

Seminar-Post (Yes/No). There
should be ellipses on this button.

22. Add a Posting menu button and menu item to form 123456713

Seminar Registration List as follows:

Menu Button Option Comment
Posting Post (F11) Runs codeunit 123456701

Seminar-Post (Yes/No). There
should be ellipses on this button.

Testing Managing Posting
It is assumed that some setup has been performed during previous test scripts and
that there is some sample data of customers, contacts(participants), seminars,
rooms and instructors when testing posting.

1. In order to test our posting routine, we first have to do some set up.
In the Navigation Pane under FINANCIAL MANAGEMENT→SETUP→TRAIL
CODES, open the Source Code Setup window. You should see the
new Seminar field on the Jobs tab. Click the lookup to open the
Source Codes window. Enter a new source code of SEMJNL with a
description of Seminar Journal and click OK. Close the Source Code
Setup window.

2. Under RESOURCE PLANNING→JOBS click Jobs to open the Job Card.
Enter a new job to use with our testing. Most of the fields don't
matter, but on the General tab you have to set the Status to Order to
be able to post. On the Posting tab, specify a Job Posting Group.
Close the Job Card.

3. Select form 123456710 Seminar Registration in the Object Designer
and click Run. Enter a new Seminar Registration, filling out all
fields and entering at least one line.

Microsoft Navision Development II − C/SIDE Solution Development

Page 140

4. Select POSTING→POST to initiate the posting routine. You will
probably encounter some errors. Some will be due to our validation
code while others will likely be bugs in the code. Use the Debugger
to help you find the sources of unexpected errors that occur when
you run your code.

5. When you have eliminated all errors, verify that your posting worked
as expected. Select form 123456734 Posted Seminar Registration in
the Object Designer and click Run. You should be able to find the
seminar registration you posted there. Check that:

– All header fields were copied over
– All lines and fields within them were copied over
– Any related charges appear in the Posted Seminar Charges

window

6. Create another Seminar Registration. Run form 123456713 Seminar
Registration List and try posting from there.

7. Open the Job Card for the job you created and select Ledger Entries
from the Job menu button. You should see records there with a
Source Code of SEMJNL created from Seminar posting.

8. Run form 123456722 Seminar Registers from the Object Designer.
You should see entries there created from our posting tests.

9. This is only an overview of the code we created for our posting
routine. If you want to test more thoroughly, review the exercises
and check on the validation and functionality we included.

Chapter 4: Managing Posting

Page 141

Test Your Knowledge
Review Questions

1. What three tables make up a journal?

2. In which type of table is permanent transaction data stored? Can

these tables be modified directly?

3. Which function would you use if you wanted to ensure that the data

in a table would not be changed by another user until you had
finished writing to the table? Is it always necessary to use this
function?

4. What are the three standard posting routine codeunits? What does

each of these codeunits do and how do they interrelate?

5. When is a document posting routine used? How does a document

posting routine interact with other posting routines?

6. What is the standard Microsoft Navision shortcut for Posting?

Conclusion
Chapter Summary
In this chapter, you learned about posting in Microsoft Navision from journals
and from transaction documents. In doing so, you learned about the different
tables and codeunits that make up a standard posting routine. You learned about
using the Microsoft Navision debugger and code coverage functionality. Finally,
you learned what key aspects of programming to keep in mind to maximize
performance.

Positioning − Where do you go from here?
You are now ready to integrate the different aspects of the solution that you have
created and to integrate the solution into the standard Microsoft Navision
interface.

Microsoft Navision Development II − C/SIDE Solution Development

Page 142

Quick Interaction: Lessons Learned
Take a moment to write down three Key Points you have learned from this
chapter:

1.

2.

3.

Chapter 5: Managing Integration

CHAPTER 5: MANAGING INTEGRATION
This chapter contains the following sections:

• Introduction
• Changing Tables That Contain Data
• Test Your Skills

– Diagnosis
– Managing Seminar Feature Integration
– Managing Navigate Integration

• Test Your Knowledge
• Conclusion

Page 143

Microsoft Navision Development II − C/SIDE Solution Development

Introduction

Positioning − What is your starting point?
You now have a basic, functioning module, in which a user can input seminar
master data, perform registrations and post completed seminar registrations. You
are now ready to integrate these features both with one another and with the
standard application.

Preconditions
The preconditions for this story are that the seminar, room, instructor, and
participant master files must exist. Seminar registration tables and forms must
exist. Posting routines for seminar registration posting must exist.

Further preconditions are knowledge of the following areas:

• Writing internal documentation
• Working with complex data types and their member functions
• Creating journal and document posting routines
• Debugging code
• Programming for low-impact on the application

Business Goals
In this story, your goal is to integrate the seminar management features with one
another and with the standard Microsoft® Business Solutions−Navision®
application.

Educational Goals
By completing this story, you should have learned or reacquainted yourself with
the following:

• Using MenuSuite objects
• Implementing Microsoft Navigate functionality

Page 144

Chapter 5: Managing Integration

Changing Tables that Contain Data
In creating the seminar module, you have created a number of tables and
modified only a few. There are a few guidelines to keep in mind when changing
tables that contain data.

C/SIDE is designed to ensure that you never lose data when you modify the
design of a table that contains data. This means that while it is possible to change
a table that contains data, there are some important general guidelines that
specify which types of changes are allowed under certain conditions. These
guidelines are as follows:

• You can always change the name of a field.
• You can change the data type for a field only if there is no data in the

field for any of the records in the table. There is one exception to this
rule: you can change the data type of a field from Code to Text even
if the field contains data for some records.

• You can always add a field to a table.
• To delete a field, you must delete all data from the field in all records

in the table. Furthermore you must remove all references to the field
from other tables, forms and reports.

• You can always increase the length of a string field, meaning a field
with a data type of Code or Text. Whether you can decrease the
length of a string field depends on the contents of all the values in
the column in the table. The minimum length of a string field is
determined by the longest string in the column.

• Although the Field No. may be changed, you should do so only if
absolutely required. Existing code has to be modified as code and
table references use the Field No.

Page 145

Microsoft Navision Development II − C/SIDE Solution Development

Test Your Skills − Managing Integration − Diagnosis
Description
In this chapter, you need to integrate the features created thus far with one
another and with the standard application. This means that you will be adding
navigation to some forms and creating a menu for the seminar module, as part of
the main menu shown in the Navigation Pane.

We also want to integrate the standard Navigate functionality into the seminar
module. The Navigate feature in Microsoft Navision allows you to see a
summary of the number and type of entries posted for a specific document
number or posting date. This feature can be quite useful in helping the user easily
trace the ledger entries that result from certain transactions. To make the seminar
module fit with the standard application and to improve the usability, we will
integrate this feature into the module.

Use Cases
We can divide the integration tasks into two use cases:

• Managing Seminar Feature Integration
• Managing Navigate Integration

Because these are both one-time use cases rather than daily activities performed
by a user, there are no use case or activity diagrams to illustrate the users'
interaction with the system.

Page 146

Chapter 5: Managing Integration

Implementation of Use Case 1 − Managing Seminar Feature
Integration

Managing Seminar Feature Integration − Analysis
To integrate our seminar features with one another, we want the registrations and
ledger entries that were developed later on to be available from the seminar
forms that were developed earlier. We also want to create a MenuSuite object for
the seminar module, which can be accessed from the standard Navigation Pane.

Purpose
The purpose of integration is to make all seminar features available from the
appropriate places in the application. This makes the customized application as
usable as possible.

Preconditions
The seminar master tables and forms and seminar registration tables and forms
must exist so that they can be integrated.

Postconditions
The appropriate seminar registrations and ledger entries will be accessible from
the Seminar Card and Seminar List forms. The seminar module will be accessible
from the main menu.

Main Scenario
When the seminar managers look at a seminar definition in the Seminar Card or
Seminar List form, they will be able to access the Seminar Registration for the
seminar as well as the Seminar Ledger Entries that relate to the seminar.
The seminar managers will typically access the features of the seminar module
from the main menu.

Activity Diagram
There is no activity diagram for this use case.

Managing Seminar Feature Integration − Design
To integrate the seminar module as described in the Analysis section, we make
modifications to some existing forms and tables and create a new Seminar Menu
that we can add to the main Menu Suite.

Page 147

Microsoft Navision Development II − C/SIDE Solution Development

GUI Design
Seminar Card (Form 123456700): Modify this form by adding a Registration
menu button as shown below:

Seminar List (Form 123456701): Modify this form by adding a menu button as
shown below:

Page 148

Chapter 5: Managing Integration

Seminar Menu: This is a new Partner level menu accessible from the standard
main menu suite. All seminar module features will be available from this menu.

Page 149

Microsoft Navision Development II − C/SIDE Solution Development

The seminar tree for this menu is as follows:

Menu
Type

Menu Name Group Comment

Group Seminars
Item Contacts Seminars Opens form 5050 Contact Card.
Item Instructors Seminars Opens form 123456705

Instructors.
Item Seminars Seminars Opens form 123456700 Seminar

Card.
Group Periodic

Activities
Seminars

Item Periodic
Activities

Periodic
Activities

Runs report 123456700 (to be
created later in the course) that
creates Seminar Invoices.

Group Order
Processing

Item Registrations Order
Processing

Opens form 123456710 Seminar
Registration.

Item Sales
Invoices

Order
Processing

Opens form 43 Sales Invoice.

Group Reports Order
Processing

You will add reports under this
group in a later chapter.

Group Documents Order
Processing

You will add documents under
this group in a later chapter.

Group History Order
Processing

Item Posted
Registrations

History Opens form 123456734 Posted
Seminar Registration.

Item Posted Sales
Invoices

History Opens form 132 Posted Sales
Invoice.

Item Registers History Opens form 123456722 Seminar
Registers.

Item Navigate History Opens form 344 Navigate.
Group Setup
Item Seminar

Setup
Setup Opens form 123456702 Seminar

Setup.
Item Seminar

Rooms
Setup Opens form 123456703 Seminar

Room Card.

Page 150

Chapter 5: Managing Integration

Functional Design
No functions are necessary for this use case.

Table Design
You will not create any new tables in this use case.

Managing Seminar Feature Integration − Development
Begin by making modifications to the Seminar Card and Seminar List forms.
You can then create the new Seminar Menu.

Exercise 14 − Integrating Seminar Features

1. Add the new button and the new menu items to form 123456700
Seminar Card as follows:

Menu Button Options Comment
Seminar Entries Opens submenu with the following option:

Ledger Entries (CTRL + F5): Opens form
123456721 Seminar Ledger Entries filtered
to entries with a corresponding Seminar No.
The link should be run whenever the form is
updated. The lines in the form should be
sorted by Seminar No. and Posting Date.

Registration Registrations Opens form 123456710 Seminar
Registration for registrations with a
Seminar Code that corresponds to the No.
field. The link should be run whenever the
form is updated.

2. Add the same menu button and menu items to form 123456701

Seminar List that you added to the Seminar Card above.

3. Create a new MenuSuite using the "Partner" level. See the
Navigation Pane Designer open on the left.

4. Right-click on a menu on the Navigation Pane Designer and choose
Create Menu. Set the caption to Seminars and the bitmap to 12.

5. Create the tree in the Seminar Menu as shown in the GUI Design.

Page 151

Microsoft Navision Development II − C/SIDE Solution Development

Implementation of Use Case 2 − Managing Navigate
Integration

Managing Navigate Integration − Analysis
To make the seminar module fit with the standard application and to improve the
usability, integrate the Navigate feature into the module.

Purpose
The purpose of integrating the Navigate feature is to improve the traceability of
transactions to their ledger entries.

Preconditions
The tables, forms, and codeunits that enable and are filled by the seminar posting
routines must exist.

Postconditions
The user will be able to access the Navigate function from ledger entry forms and
posted seminar documents as well as from the standard application.

Main Scenario
When the seminar managers want to look at a complete summary of the ledger
entries that were created for a posted seminar registration or ledger entry, they
will use Navigate.

Activity Diagram
There is no activity diagram for this use case.

Managing Navigate Integration − Design
We want the Navigate feature to be available from the Seminar Ledger Entries
form and the Posted Seminar Registration form.

Page 152

Chapter 5: Managing Integration

GUI Design
Seminar Ledger Entries (Form 123456721): Modify this form by adding a
Navigate command button:

Posted Seminar Registration (Form 123456734): Modify this form by adding a
Navigate command button:

Functional Design
No functions are necessary for this use case.

Table Design
Do not create any new tables in this use case, but you will need to create new
keys for two tables. The new keys will be specified in the development section.

Page 153

Microsoft Navision Development II − C/SIDE Solution Development

Managing Navigate Integration − Development
The development steps to integrate the Navigate feature consist of adding keys to
the ledger entry tables of the Seminar module, adding code to the Navigate form
and adding command buttons to forms as shown in the GUI design.

Exercise 15 − Modifying Objects to Integrate Navigate
1. Add the secondary key Document No., Posting Date to table

123456732 Seminar Ledger Entry.

2. In form 344 Navigate, add the following global variables:

Name DataType Subtype Length
SemRegHeader Record Seminar Registration

Header

PstdSemRegHeader Record Posted Seminar Reg.
Header

SemLedgEntry Record Seminar Ledger Entry

3. Enter code in the FindRecords function trigger of the Navigate form
so that the function performs the following tasks:

– If the READPERMISSION property is TRUE on the Seminar
Registration Header record, the program resets this record
variable and filters the table to the records where the No.
matches the DocNoFilter variable and the Posting Date matches
the PostingDateFilter variable. Next, the program runs the
function InsertIntoDocEntry.

– The program then performs the same steps as above for the
Posted Seminar Reg. Header table and the Seminar Ledger Entry
table.

4. Enter code in the ShowRecords function trigger of the Navigate form

so that the function performs the following tasks:

– When the Table ID is that of the Seminar Registration Header,
the function runs the lookup form for the Seminar Registration
Header table.

– When the Table ID is that of the Posted Seminar Reg. Header,
the function runs the lookup form for the Posted Seminar Reg.
Header table.

Page 154

Chapter 5: Managing Integration

– When the Table ID is that of the Seminar Ledger Entry, the
function runs the lookup form for the Seminar Ledger Entry
table.

5. Add the Navigate command button to form 123456721 Seminar

Ledger Entries.

6. Enter code in the appropriate trigger so that when the user clicks the
Navigate button, the program runs the SetDoc function of the
Navigate form and then runs the Navigate form.

7. Add the Navigate command button to form 123456734 Posted
Seminar Registration.

8. Enter code in the appropriate trigger so that when the user clicks the
Navigate button, the program runs the SetDoc function of the
Navigate form and then runs the Navigate form.

Testing Managing Integration
Use the following script to test your development of the menu and navigate
functionality.

1. Click the Seminars menu item in the Navigation Pane.

2. In the menu tree, click each of the items and check that the
appropriate form or report opens. Remember that there are some
items yet to be developed.

3. Use the Posted Registrations menu item to open the Posted Seminar
Registrations form. Click the Navigate button and see that the
Navigate form opens with the same Document Number.

4. Select Seminar Ledger Entry in the subform and click Show. The
Seminar Ledger Entries form should open with the entries related to
Posted Seminar Registration.

Page 155

Microsoft Navision Development II − C/SIDE Solution Development

Test Your Knowledge
Review Questions

1. What is the standard Microsoft Navision shortcut for viewing Ledger
Entries?

2. As a developer, at what level will you normally create MenuSuite

objects?

3. From which types of forms is the Navigate feature typically

available?

Conclusion
Chapter Summary
In this chapter, you integrated our previously created seminar module features
with one another by adding navigation to forms. You added to the navigation
pane so that the seminar module functionality is accessible in a standard way.
Finally, we integrated the Navigate feature into the seminar module.

Positioning − Where do you go from here?
You are now ready to create reports for the seminar module.

Page 156

Chapter 5: Managing Integration

Quick Interaction: Lessons Learned
Take a moment to write down three Key Points you have learned from this
chapter:

1.

2.

3.

Page 157

Microsoft Navision Development II − C/SIDE Solution Development

Page 158

Chapter 6: Managing Reporting

CHAPTER 6: MANAGING REPORTING
This chapter contains the following sections:

• Introduction
• Reporting

– Report Triggers
– Report Functions
– Processing-only Reports

• Test Your Skills

– Diagnosis
– Managing Participant List Reporting
– Managing Certification Confirmation
– Managing Invoice Posting

• Test Your Knowledge
• Conclusion

Page 159

Microsoft Navision Development II − C/SIDE Solution Development

Introduction

Positioning − What is your starting point?
The seminar module includes so far:

• Master tables and forms.
• A means to create seminar registrations.
• Routines necessary to post the registrations.

These features are integrated into the standard application so that they can be
accessed from the Main Menu. You are now ready to create reports for the
module.

Preconditions
To create the reports for the seminar module, you must have master tables and
forms, tables and forms for seminar registration, and the seminar registration
posting routines.

Further preconditions are knowledge of the following areas:

• Writing internal documentation
• Enabling multilanguage functionality
• Exporting and importing objects
• Working with event triggers
• Working with complex data types and their member functions
• Using virtual tables
• Using temporary tables
• Creating journal and document posting routines
• Debugging code
• Programming for low-impact on the application

Business Goals
In this story, your goal is to create reports to improve the usability of the seminar
module and to enable the posting of invoices.

Educational Goals
By completing this chapter, you should have learned or reacquainted yourself
with the following:

• Using report event triggers
• Using special report functions
• Creating processing-only reports

Page 160

Chapter 6: Managing Reporting

Reporting
Report Triggers
Because there are so many events that happen when running a report, there are a
number of event triggers for reports. The report itself, its data items, sections,
request form and controls all have triggers. In this section, we do not describe all
the triggers, but we will take a look at the order in which some of the more
frequently used triggers fire when a report is run.

1. When the user initiates the running of the report, the OnInitReport
trigger is called. This trigger can perform processing that is
necessary before any part of the report is run. It can also stop the
report.

2. If the OnInitReport does not end the processing of the report, the
request form for the report is run, if it is defined. Here, the user can
choose to cancel the report.

3. If the user chooses to continue, the OnPreReport trigger is called. At
this point, no data has yet been processed.

4. When the OnPreReport trigger has been executed, the first data item
is processed (provided that the processing of the report was not
ended in the OnPreReport trigger).

5. Before the first record is retrieved, the OnPreDataItem trigger is
called, and after the last record has been processed, the
OnPostDataItem trigger is called.

6. Between these two triggers, the records of the data item are
processed. Processing a record means executing the record triggers
and outputting sections. C/SIDE also determines whether the current
record should cause outputting of a special section: header, footer,
group header or group footer.

7. If there is an indented data item, a data item run is initiated for this
data item (data items can be nested 10 levels deep).

8. When there are no more records to be processed in a data item,
control returns to the point from which the processing was initiated.
For an indented data item this is the next record of the data item on
the next higher level. If the data item is already on the highest level
(indentation is zero), control returns to the report.

9. When the first data item has been processed, the next (if any) data
item is processed in the same way.

10. When there are no more data items, the OnPostReport trigger is
called. You can use this trigger to do any post processing that is
necessary, for example, cleaning up by removing temporary files.

Page 161

Microsoft Navision Development II − C/SIDE Solution Development

Report Functions
Certain functions can only be used in reports. These functions can be useful when
you create complex reports.

CurrReport.SKIP: Use this function to skip the current record of the current
data item. If a record is skipped, it is not included in totals and it is not printed.
Skipping a record in a report is much slower than never reading it at all, so use
filters as much as possible.

CurrReport.BREAK: Use this function to skip the rest of the processing of the
data item that you are currently processing. The report resumes processing the
next data item. All data items indented under the one that caused the break are
also skipped.

CurrReport.QUIT: This function skips the rest of the report. It is not an error,
however. It is a normal ending for a report.

CurrReport.PAGENO: Use this function to return the current page number of a
report and/or to set a new page number.

CurrReport.CREATETOTALS: Use this function to maintain totals for a
variable in the same way as totals are maintained for fields by using the
TotalFields property. This function must be used in the OnPreDataItem trigger of
the data item in the sections in which you will display the totals.

CurrReport.TOTALSCAUSEDBY: Use this function to determine which field
caused a break to occur. The return value is the field number of the field that the
data item is grouped on that changed and caused a Group Header or Group
Footer section to print. This function is almost always used in the OnPreSection
trigger of Group Header and Group Footer sections. This function must always
be used when grouping more than one field for a single data item.

CurrReport.NEWPAGE: Use this function to force a page break when printing
a report. This is usually found in the data item triggers.

CurrReport.PREVIEW: Use this function to determine whether a report is
being printed in preview mode or not.

CurrReport.SHOWOUTPUT: Use this function to return the current setting of
whether a section should be outputted or not, and to change this setting. This
function should only be used in the OnPreSection trigger of a section. If TRUE is
passed to the function, nothing changes and the section will print as normal. If
FALSE is passed to the function, the section will not be printed for this iteration
of the data item.

Page 162

Chapter 6: Managing Reporting

Processing−Only Reports
A processing-only report is one that does not print but instead changes table data.
Printing reports can also change records. This section applies to those reports as
well. You can specify a report to be "Processing Only" by changing the
ProcessingOnly property of the Report object. The report functions just as it is
supposed to (processing data items), but it does not print any sections.

The request form changes slightly as well by removing the Print and Preview
buttons and replacing them with an OK button (Cancel and Help buttons stay).

Here are some helpful hints for writing a processing-only report:

• Change the ProcessingOnly property to Yes.
• Decide which tables should be read − these are the data items.
• Most of the code will go into the OnAfterGetRecord trigger.
• Do not forget the INSERT or MODIFY functions.
• Use a dialog to show the user the progress, and allow the user to

cancel the report.

There are a few advantages to using a report to process data rather than a
codeunit. One is that the request form functionality that allows the user to select
options and filters for data items is readily available in a report, but difficult to
program in a codeunit. Using the features of the Report Designer ensures
consistency. Finally, instead of writing code to open tables and to retrieve
records, you can simply use data items.

Page 163

Microsoft Navision Development II − C/SIDE Solution Development

Test Your Skills − Managing Reporting − Diagnosis

Description
Our client's functional requirements describe their reporting needs in the
following way:

You should be able to print a list of the participants registered for a seminar.

Upon completion of some seminars, participants receive a seminar certificate.
We want to create such certificates from the system for individual participants.

When a seminar is finished, we want to invoice the customers for the
participation of their registered participants. Invoicing will be by project and
resources.

There are three main reports that can be created to fulfill these requirements: a
participant list, a certificate confirmation and a processing-only report that posts
invoices.

Use Cases
We can split the creation of reports for the seminar module into the following
three use cases:

• Managing Participant List Reporting
• Managing Certificate Confirmation
• Managing Invoice Posting

The following diagram illustrates the use cases:

Page 164

Chapter 6: Managing Reporting

Implementation of Use Case 1 − Managing Participant List
Reporting

Managing Participant List Reporting − Analysis
Our client's functional requirements describe the participant list report in the
following way:

You should be able to print a list of the participants registered for a seminar.

The client requires a report that lists the participants who have registered for a
seminar.

Purpose
This report will allow the user to see who has been registered for a seminar.

Postconditions
A report listing participants who are registered for a seminar can be printed from
either the main Seminar Menu or from the Seminar Registration form.

Main Scenario
When seminar managers or instructors want to see or print a list of participants
who are registered for a seminar, they will preview or print the report with this
information from either the Seminar Menu, Reports option or the Seminar
Registration form.

Activity Diagram

Page 165

Microsoft Navision Development II − C/SIDE Solution Development

Managing Participant List Reporting − Design
To implement this report, create:

• The report itself.
• The request form to set the parameters of the report.
• The controls to access the report from forms.
• A form from which seminar reports can be selected.

GUI Design
Seminar Report Selection (Form 123456723): This form displays the available
seminar reports.

Seminar Menu: Modify this menu by adding the following menu item to the
Reports Group (under Order Processing):

Menu Type Menu Name Group Comment
Item Seminar Reg.-

Participant List
Reports Opens report 123456701

Seminar Reg.-Participant
List.

Item Seminar Reg.-
Part. Certificate

Reports Opens report 123456702
Seminar Reg.-Part.
Certificate.

Add the following menu item to the Setup Group:

Menu Type Menu Name Group Comments
Item Report Selections Setup Opens form 123456723

Seminar Report Selection.

Page 166

Chapter 6: Managing Reporting

Seminar Registration (Form 123456710): Modify this form by adding a Print
command button from which to start the Participant List report.

Functional Design
To create this report, identify the tables from which the information should come
and decide how to process the information.

The information for the report comes from the Seminar Registration Header and
Seminar Registration Lines.

When running this report, the user should select which Seminar Registration
Headers should be included. The program should then, for each Seminar
Registration Header, print information from each corresponding Seminar
Registration Line.

Table Design
Create one new table:
Table 123456705 Seminar Report Selections

Modify:
Table 123456710 Seminar Registration Header

Managing Participant List Reporting − Development
We begin development by creating the Participant List report and then we create
the means by which seminar reports can be selected from a form.

Page 167

Microsoft Navision Development II − C/SIDE Solution Development

Exercise 16 − Creating the Participant List Report
1. First, add a field to table 123456710 Seminar Registration Header as

follows:

No. Field Name Type Length Comment
40 No. Printed Integer Must not be editable.

In the next tasks, create a codeunit to increment the No. Printed field you just
added to the Seminar Registration Header table.

2. Create codeunit 123456702 Seminar Registration-Printed. Set the
property to specify Seminar Registration Header as the source table
for this codeunit.

3. Enter code in the appropriate trigger so that when the program runs
this codeunit, it finds the Seminar Registration Header record,
increases the No. Printed by 1, modifies and commits the table.

You are now ready to create the actual report in the next tasks.

4. Use the wizard to create form-type report 123456701 Seminar Reg.-
Participant List based on table 123456710 Seminar Registration
Header table. Add fields No., <Separator>, Seminar Code,
Seminar Name, Starting Date, Duration, Instructor Name and
Room Name to the report. Save the report.

5. Set the properties for the Seminar Registration Header data item so
that it is sorted by No. and so that the filter fields the user can fill in
when running the report are No., Seminar Code, No. Printed.

6. Add a data item called CopyLoop for the Integer virtual table.

– Set the property so that the data item is indented to the first level.
– Set the DataItemTableView property so that the table is sorted

by Number.
– Set the property so that a new page is created for each record.

7. Add a data item called PageLoop for the Integer virtual table.

– Set the property so that the data item is indented to the second
level.

– Set the property so that the table is sorted by Number where the
Number is 1.

Page 168

Chapter 6: Managing Reporting

8. Add a data item for the Seminar Registration Line table.

– Set the property so that the data item is indented to the third
level.

– Set the property so that the data item is sorted by Document No.,
Line No.

– Set the DataItemLinkReference and the DataItemLink properties
so that the data item is linked to the Seminar Registration Header
data item.

9. Set the property for the report so the caption is Seminar Reg.-

Participant List.

10. Add the following sections to the report:

– Two headers for the PageLoop data item.
– A header and body section for the Seminar Registration Line

data item.

11. Delete all sections except the ones you have just added.

12. Move the fields from the Seminar Registration Header header section
to the first PageLoop header section and all the fields from the
Seminar Registration Header body section to the second PageLoop
header section.

– Set the property for the Seminar Registration Line header section
so that it prints on every page.

– Set the property for the first PageLoop header section so that the
section prints on every page.

– Set the property for the second PageLoop header section so that
the section prints on every page.

13. Add the fields Bill-to Customer No., Participant Contact No. and

Participant Name to the Seminar Registration Line body section.
Move the labels for these fields to the Seminar Registration Line
header section.

14. In the second PageLoop header section, you now have the text boxes
that identify the seminar registration and seminar information.
Because the fields have been moved from a different section, the
program does not know from which table the data for the text boxes
should be taken. Set the SourceExpr property for each text box in
this section so that the table is specified along with the field name.

Page 169

Microsoft Navision Development II − C/SIDE Solution Development

15. Define the following global variables for the report:

Name DataType Subtype Length
SeminarCountPrinted Codeunit Seminar Registration-

Printed

NoOfCopies Integer
NoOfLoops Integer

16. Enter code in the appropriate trigger so that after the program gets

the record of the Seminar Registration Header table, the program
calculates the Instructor Name field.

17. Enter code in the appropriate trigger so that before the CopyLoop
data item is run, the program sets the NoOfLoops to one more than
the absolute value of the NoOfCopies and filters the table to the
records between 1 and the NoOfLoops.

18. Enter code in the appropriate trigger so that after the program gets
the record for the CopyLoop data item, the program sets the page
number of the current report to 1.

19. Enter code in the appropriate trigger so that after the CopyLoop data
item, if the current report is not being previewed, the program runs
the Seminar Registration-Printed codeunit for the Seminar
Registration Header record.

20. On the request form for the report, add a text box with the caption
"No. of Copies" with the source expression of the NoOfCopies
variable.

21. Set the properties for the request form so that the form saves the
values after it is closed.

Now that we have created the report, we can create the table and form from
which the report can be selected and run.

Page 170

Chapter 6: Managing Reporting

22. Create Table 123456705 Seminar Report Selections with the
following fields:

No. Field Name Type Length Comment
1 Usage Options Options: S.Registration.
2 Sequence Code 10 Numeric field.
3 Report ID Integer Relation to the ID field of the

Object table where the
Type=Report.

4 Report
Name

Text 80 FlowField; CalcFormula
looks up the Object Caption
field of the
AllObjWithCaption table
where the Object
Type=Report and the Object
ID= the field number of the
Report ID. Must not be
editable.

 The primary key for this table is Usage, Sequence.

23. Enter code in the appropriate trigger so that when the user enters or
changes the value in the Report ID field, the program calculates the
Report Name value.

24. Define a new function called NewRecord.

25. Enter code in the function trigger so that the function filters the
Seminar Report Selection table to the corresponding Usage. If the
function can find the last record in the record set and if the Sequence
for the record is not blank, the function increments the Sequence. If
the function cannot find the last record or if the Sequence is blank,
the function sets the Sequence to 1.

26. Create form 123456723 Seminar Report Selection with the fields
Sequence, Report ID and Report Name as shown in the GUI
design. Set the properties for the form so that it saves the values
when the form is closed.

27. Set the properties for the Report ID text box so that the lookup form
is the Objects form.

28. Set the properties for the Report Name text box so that there is no
drill down and so that the lookup form is the Objects form.

29. Define a global variable called ReportUsage with the data type
Option and a single option of Registration.

Page 171

Microsoft Navision Development II − C/SIDE Solution Development

30. Define a function called SetUsageFilter. Enter code in the function
trigger so that the function sets the filtergroup to 2, and if the
ReportUsage is Registration, the function filters the table to where
Usage is S. Registration. At the end, the function resets the
filtergroup to 0.

31. Add a text box labeled Usage to the top of the form as shown in the
GUI design. Set the properties of the text box so that the option is
Registration and the source expression is the ReportUsage variable.

32. Enter code in the appropriate trigger so that the program runs the
SetUsageFilter function when the user enters or changes the value in
the Usage text box and when the program opens the form.

33. Enter code in the appropriate trigger so that after the program
validates the Usage text box, the program updates the form.

34. Enter code in the appropriate trigger so that when the form opens a
new record, the program runs the NewRecord function.

You can now add menu items to the main Seminar Menu to allow the user to run
the reports.

35. Add the Report Selections menu item to the Setup menu item in the
Seminar Menu as shown in the GUI design.

36. Add the reports as shown in the GUI design into the Partner Menu
Suite under the Order Processing − Reports group.

You want the user to be able to run the participant list for a particular seminar
registration from the registration form. To enable this, add a command button to
the form that will run a codeunit to print the report. You will develop the
codeunit first.

37. Create codeunit 123456703 Seminar Document-Print.

38. Define a function called PrintSeminarRegistrationHeader that takes
one parameter. This parameter is a record variable of the Seminar
Registration Header table, called SemRegHeader.

39. Enter code in the function trigger so that the function filters the
SemRegHeader to the No. of the SemRegHeader record. The
function filters the Seminar Report Selection table to those records
with a Usage of S. Registration and a Report ID that is not 0. The
function finds the first record in this set, and for each record in the
set, modally runs the report corresponding to the Report ID.

40. Add the Print command button to form 123456710 Seminar
Registration as shown in the GUI design. Enter code in the
appropriate trigger so that when the user clicks this button, the
program runs the PrintSeminarRegistrationHeader function of the
Seminar Document-Print codeunit.

Page 172

Chapter 6: Managing Reporting

Managing Participant List Reporting − Testing

1. If you do not have any Seminar Registration records, create one by
selecting SEMINARS→ORDER PROCESSING→REGISTRATIONS from the
main menu. Fill in all of the fields in the General and Seminar
Rooms tabs and add at least two participants.

2. Use the Seminar Report Selection window to set up the Seminar
Reg.-Participant List as the report to be run for Registration. To do
so, select SEMINARS→SETUP→REPORT SELECTIONS from the main
menu. Select Registration as the Usage and 123456701 on the first
line for the Report ID. The report name should be filled in
automatically by our code.

3. Open the Seminar Registration form again and view the record you
prepared in step 1. Click the Print button.

4. The request form should open with the No. set to the current
registration. Select Print or Preview to print and check your report.

5. Try printing the report with different parameters and registration data
to verify that it is working correctly.

Implementation of Use Case 2 − Managing Certificate
Confirmation

Managing Certificate Confirmation − Analysis
Our client's functional requirements describe the certificate confirmation report
in the following way:

Upon completion of some seminars, participants receive a seminar certificate.
We want to create such certificates from the system for individual participants.

From this we can see that we need a printed certificate confirmation report that
can be run for all the participants who completed a seminar.

Purpose
The certificate confirmation report allows the client to provide participants with a
printed confirmation of successful participation in a seminar.

Preconditions
The precondition for this report is that a seminar registration must be posted.

Postconditions
After this report has been run, there will be a printed certificate confirmation for
each participant who attended the seminar.

Page 173

Microsoft Navision Development II − C/SIDE Solution Development

Main Scenario
At the end of the seminar, the seminar managers will print certificate
confirmations for each participant in the seminar.

Activity Diagram

Managing Certificate Confirmation − Design
GUI Design
No additional forms or navigation are necessary for this use case.

Functional Design
This report must create a page for each participant in a given seminar
registration. Therefore, we need to use the Seminar Registration Header table and
Seminar Registration Line table.

For each Seminar Registration Header selected by the user in the request form,
the report should print one certificate for each participant, with information from
the Seminar Name, Starting Date and Instructor Name fields on the Seminar
Registration Header table and from the Participant Name field on the Seminar
Registration Line table.

The client has provided a model for how this report should appear. This sample
report is in the appendix of this manual.

Table Design
No additional tables or fields are necessary for this use case.

Page 174

Chapter 6: Managing Reporting

Managing Certificate Confirmation − Development
Exercise 17 − Creating the Certificate Confirmation Report

1. Create report 123456702 Seminar Reg.-Part. Certificate with the data
items Seminar Registration Header and Seminar Registration Line.

2. Set the properties for the Seminar Registration Header data item so
that the table is sorted by No. The user should be able to filter on the
fields No., Starting Date and Seminar Code when running the
report. The data item should only print if there are records to be
printed.

3. Set the properties for the Seminar Registration Line data item so that
it is indented to the first level and so that the data item is sorted by
Document No. and Line No. Set the link property and set the
property so that there is a new page for each record.

4. Define a global record variable of the Company Information table,
called CompanyInfo.

5. Enter code in the appropriate trigger so that before the program runs
the Seminar Registration Header data item, it gets the CompanyInfo
record and calculates the Picture.

6. Enter code in the appropriate trigger so that after the program gets
the record for the Seminar Registration Header data item, it
calculates the Instructor Name.

7. Enter code in the appropriate trigger so that after the program gets
the record for the Seminar Registration Line data item, it skips to
the next record if there is no Participant Name in this record.

8. The sections we use in this report are two body sections and one
footer section, all for the Seminar Registration Line data item. Set
the property for the footer section so that the section prints at the
bottom of every page.

9. Place a picture box in the first body section as shown in the sample
report in the appendix. The source for the picture box is the Picture
field of the CompanyInfo record.

10. Place the following labels on the report for the fixed text of the
report as shown in the sample report in Appendix A:

– The "Participant Certificate" title, with a font size of 30 and bold.
– The "has participated in seminar" phrase, with a font size of 15.

Page 175

Microsoft Navision Development II − C/SIDE Solution Development

11. Set the captions for the labels so that they display the correct
information.

12. Place text boxes on the report for the variable text of the report:

– The participant name, with a font size of 25 and bold.
– The seminar name, with a font size of 20 and bold.
– The "on <date>" phrase, with a font size of 15.
– The instructor's name, with a font size of 9.

13. Set the source expressions for the text boxes so that they display the

correct information.

14. Add a shape to the report in the footer section. Set the properties for
the shape so that the shape style is that of a horizontal line.

Managing Certificate Confirmation − Testing
1. Select SEMINARS→ORDER PROCESSING→REPORTS→SEMINAR REG.-

PART. CERTIFICATION from the main menu.

2. Select a registration and Print or Preview to verify that the report is
functioning correctly.

Implementation of Use Case 3 − Managing Invoice Posting

Managing Invoice Posting − Analysis
Our client's functional requirements describe the invoice posting in the following
way:

When a seminar is finished, we want to invoice the customers for the
participation of their registered participants. Invoicing will be by project and
resources.

From this we can see that we need to create a report to produce invoices for
customers where the lines are for one or more participants who have attended a
seminar, as well as any charges.

Purpose
The purpose of this report is to enable customers to be invoiced for participation
in seminars.

Preconditions
Seminar registration, posted seminar registration, customer and contact
information must exist for the creation of this report.

Postconditions
The result of this use case will be a report that can be run to automatically
generate invoices for one or more seminar registrations.

Page 176

Chapter 6: Managing Reporting

Main Scenario
After posting a seminar registration, the seminar managers will run the invoice
posting report to create a batch of invoices for one or more customers, with one
or more lines on each for the participants who registered in the seminar.

Activity Diagram

Managing Invoice Posting − Design
GUI Design
No additional forms or navigation are necessary for this use case.

Functional Design
This report must create an invoice for each customer within a filter specified by
the user, with lines for each participant in a registered seminar (that falls within
the filter set by the user). The user should also have the option of either just
creating the invoices or both creating and posting them at the same time.

Because we only want to create invoices for posted seminars, and because there
can be additional charges, we should use the Seminar Ledger Entries to get the
information to run this report. The report should create Sales Headers and Sales
Lines as appropriate, and if the user has selected the option to post the invoices as
well, the report should run the posting process for sales invoices.

Page 177

Microsoft Navision Development II − C/SIDE Solution Development

Table Design
No additional tables or fields are necessary for this use case.

Managing Invoice Posting − Development
This report is different from the previous two in that it is not a report to be
printed but is instead a processing-only report.

Exercise 17 − Creating the Invoice Posting Report
1. Create report 123456700 Create Seminar Invoices. Set the property

to specify that this report is for processing-only.

2. Create a data item for the Seminar Ledger Entry table and set the
properties for the data item as follows:

– Specify the view of the data item to be sorted by Bill-to
Customer No., Seminar Registration No., Charge Type and
Participant Contact No., where the Remaining Amount is not
0.

– Specify that the user should be able to filter on the Bill-to
Customer No., Seminar No. and Posting Date.

– Specify the variable name of the data item as
SeminarLedgerEntry.

3. Define the following global variables for the report:

Name DataType Subtype Length
SalesHeader Record Sales Header
SalesLine Record Sales Line
SalesSetup Record Sales & Receivables Setup
GLSetup Record General Ledger Setup
Cust Record Customer
Job Record Job
JobLedgEntry Record Job Ledger Entry
ApplJobLedgEntry Record Job Ledger Entry
JobPostingGr Record Job Posting Group
CurrExchRate Record Currency Exchange Rate
SalesCalcDisc Codeunit Sales-Calc. Discount
SalesPost Codeunit Sales-Post
JobLedgEntrySign Code 10
Window Dialog
PostingDateReq Date

Page 178

Chapter 6: Managing Reporting

Name DataType Subtype Length
DocDateReq Date
CalcInvDisc Boolean
PostInv Boolean
NextLineNo Integer
NoOfSalesInvErrors Integer
NoOfSalesInv Integer

4. Define the following text constants for the codeunit:

Name ConstValue
Text000 Please enter the posting date.
Text001 Please enter the document date.
Text002 Creating Seminar Invoices...\\
Text003 Customer No. #1##########\
Text004 Registration No. #2##########\
Text005 The number of invoice(s) created is %1.
Text006 Not all the invoices were posted. A total of %1 invoices were

not posted.
Text007 There is nothing to invoice.

5. Define a function called FinalizeSalesInvHeader. Set the property to

specify that this is a local function.

6. Define a function called InsertSalesInvHeader. Set the property to
specify that this is a local function.

7. Enter code in the FinalizeSalesInvHeader function trigger so that the
function performs the following tasks:

– If the CalcInvDisc variable is TRUE, the function runs the Sales-
Calc. Discount codeunit with the Sales Line record and finds the
Sales Header.

– The function then performs a commit.
– The function clears the SalesCalcDisc and SalesPost variables

and increments the NoOfSalesInv by one.
– If the PostInv variable is TRUE, the function clears the SalesPost

variable. If running the Sales-Post codeunit with the SalesHeader
returns FALSE, the function should increment the
NoOfSalesInvErrors by one.

Page 179

Microsoft Navision Development II − C/SIDE Solution Development

8. Enter code into the InsertSalesInvHeader function trigger so that the
trigger performs the following tasks:

– Initializes a new Sales Header record with a Document Type of
Invoice and a blank No. and inserts it into the database.

– Validates that the Sell-To Customer No. of the new record
equals the Bill-to Customer No. of the ledger entry.

– If the Bill-to Customer No. value is not the same as that of the
Sell-To Customer No., the program should validate that the
Bill-to Customer No. of the new record equals the Bill-to
Customer No. of the ledger entry.

– Validates that the Posting Date of the new record is the
PostingDateReq.

– Validates that the Document Date of the new record is the
DocDateReq.

– Validates that the Currency Code of the new record is blank.
– Modifies and commits the new record.
– Sets the NextLineNo variable to 10000.

9. Enter code into the appropriate trigger so that just before the data

item is run, the program performs the following tasks:

– Shows an error if the PostingDateReq or DocDateReq is empty.
– Opens a dialog window with the text constants Text002, Text003

and Text004.

10. Enter code in the appropriate trigger so that after the program gets a
record for the data item, the program performs the following tasks:

– Gets the Job Ledger Entry corresponding to the Seminar Ledger
Entry record.

– If the No. of the Customer record is not the same as the Bill-to
Customer No., the program gets the Customer record
corresponding to the Bill-to Customer No.

– If the Customer is not blocked for All or is only blocked for
Invoice, the program proceeds with the tasks that follow.

– If the Bill-to Customer No. is different from that on the current
Sales Header record, the program updates the dialog window
with the new Bill-to Customer No. If the No. on the Sales
Header is not blank, it runs the FinalizeSalesInvHeader function.
The program then runs the InsertSalesInvHeader function and
sets the Document Type and Document No. fields on the Sales
Line to be those of the Sales Header.

– Updates the dialog window with the Sales Registration No.
– Sets the Type on the Sales Line according to the Type on the

Job Ledger Entry.

Page 180

Chapter 6: Managing Reporting

– If the Type on the Job Ledger Entry is G/L Account, the
program tests that the Job Posting Group on the corresponding
Job record is not blank. The program tests that the G/L Exp.
Sales Acc. field on the corresponding Job Posting Group record
is not blank. The program sets the No. of the Sales Line to the
G/L Exp. Sales Acc. value.

– If the Type on the Job Ledger Entry is not G/L Account, the
program sets the No. of the Sales Line to the No. on the Job
Ledger Entry.

– Fills the Sales Line fields as follows: Document Type and
Document No. from the Sales Header, Line No. from the
NextLineNo variable, Description from the Seminar Ledger
Entry, Work Type Code and Unit of Measure Code from the
Job Ledger Entry, and Unit Price from dividing the Total Price
from the Job Ledger Entry by the Quantity.

– If the Currency Code on the Sales Header is not blank, the
program tests that the Currency Factor is blank and calculates
the Unit Price for the Sales Line by running the
ExchangeAmtLCYToFCY function of the Currency Exchange
Rate table.

– Fill the Sales Line fields as follows: Unit Cost (LCY) from the
Total Cost of the Job Ledger Entry divided by the Quantity, and
the Quantity, Job No., Phase Code, Task Code, and Step
Code fields from the Job Ledger Entry.

– If the Total Price on the JobLedgEntry is greater than 0, the
program sets the JobLedgEntrySign to '+' and filters the
ApplJobLedgEntry records to those where the Applies-To ID
matches that of the JobLedgEntry, with a '-' sign at the end
(meaning JobLedgEntry."Applies-To ID" + '-'). For these
records, the program modifies the Applies-To ID to blank. If the
Total Price is less than 0, the program performs the same steps
with opposite signs.

– Sets the Applies-To ID of the Job Ledger Entry record to the
Entry No. plus the JobLedgEntrySign and modifies the record.

– Sets the Job Applies-To ID to the Applies-To ID of the Job
Ledger Entry record.

– Sets the Apply and Close (Job) field on the SalesLine to TRUE.
– Inserts the Sales Line record.
– Increments the NextLineNo by 10000.
– If the Customer record is blocked for All or Invoice, increments

the NoOfSalesInvErrors by one.

11. Enter code in the appropriate trigger so that when the program posts
the data item, it performs the following tasks:

– Closes the dialog window.

Page 181

Microsoft Navision Development II − C/SIDE Solution Development

– If the No. of the Sales Header is not blank, runs the
FinalizeSalesInvHeader function. The program then displays a
message showing the number of errors that occurred, if any, or
the number of invoices created.

– If the No. of the Sales Header is blank, the program shows a
message saying that there is nothing to invoice.

12. Place two new text boxes and labels on the request form. The sources

for these text boxes are the variables PostingDateReq and
DocDateReq.

13. Place two new check boxes and labels on the request form. The
sources for these check boxes are the variables CalcInvDisc and
PostInv.

14. Set the property for the request form so that the form saves the
values after the form is closed.

15. Enter code in the appropriate trigger so that when the request form is
opened, if the PostingDateReq and DocDateReq variables are not
filled, they are set to the work date. Set the CalcInvDisc value to the
value of the Calc. Inv. Discount field in the Sales Setup.

Managing Invoice Posting − Testing
To test this portion of the seminar module, you need to have completed the
testing and set up described in the previous exercises. In particular, it is important
that the Job and Customer associated with the registrations you are testing have
been set up correctly.

1. Select SEMINARS→PERIODIC ACTIVITIES→PERIODIC ACTIVITIES from the
main menu.

2. The Create Seminar Invoices request form should open. Enter data so
that one or more of your posted registrations meet the criteria. (If you
do not have any posted registrations, create one.) Select OK to run
the processing-only report.

3. Look at the Sales Invoices that were created. See that the header and
lines were created correctly based on the Seminar information. You
should expect to have one invoice per Bill-to Customer with a line
for each contact registered. Check that the data flowed correctly from
the registration (and the associated jobs, etc.) to the invoice.

4. Try running the Create Seminar Invoices process with the Post
Invoices Option marked and unmarked and verify that the Sales
Invoices are posted as indicated.

Page 182

Chapter 6: Managing Reporting

Test Your Knowledge
Review Questions

1. Place these triggers in the order in which they would "fire" in normal
report processing: OnPostDataItem, OnPreReport,
OnAfterGetRecord, OnPreDataItem, OnPostReport, OnInitReport.

2. What report function would you use to skip the processing of one

record in a data item?

3. What are the advantages of using processing-only reports in some

situations as opposed to codeunits?

4. What does the following line of code do and in what trigger would

you expect it to appear?

CurrReport.SHOWOUTPUT(CurrReport.TOTALSCAUSEDBY =
FIELDNO("Posting Date"));

5. What do you have to do to print FlowField data when running a

report? What trigger would you use for this code?

6. In what trigger do you first have access to the values the user entered

on the request form?

Conclusion
Chapter Summary
In this chapter, you created three reports. The first two, Participant List and
Certificate Confirmation were normal reports. The third report, however, was a
processing-only report to enable the creation of invoices for customers with
participants in completed seminars.

Positioning − Where do you go from here?
You are now ready to create statistics for the seminar module.

Page 183

Microsoft Navision Development II − C/SIDE Solution Development

Quick Interaction: Lessons Learned
Take a moment to write down three Key Points you have learned from this
chapter:

1.

2.

3.

Page 184

Chapter 7: Managing Statistics

CHAPTER 7: MANAGING STATISTICS
This chapter contains the following sections:

• Introduction
• Using FlowFilters in Calculation Formulas
• Test Your Skills

– Diagnosis
– Managing Seminar Statistics

• Test Your Knowledge
• Conclusion

Page 185

Microsoft Navision Development II − C/SIDE Solution Development

Introduction

Positioning − What is your starting point?
So far, the seminar module includes master tables and forms, a means to create
seminar registrations and the routines necessary to post the registrations. These
features are integrated into the standard application so that they can be accessed
from the Navigation Pane. There are also reports for the module. You can now
add statistics functionality.

Preconditions
To create the statistics functionality for the seminar module, you must have
master tables and forms, tables and forms for seminar registration, and the
seminar posting routines.

Further preconditions are knowledge of the following areas:

• Writing internal documentation
• Working with event triggers
• Working with complex data types and their member functions
• Creating journal and document posting routines
• Debugging code
• Programming for low-impact on the application

Business Goals
In this story, your goal is to add a feature to the seminar module: the ability to see
statistical information.

Educational Goals
By completing this story, you will have learned or reacquainted yourself with the
following:

• Using FlowFields and FlowFilters for calculations

Page 186

Chapter 7: Managing Statistics

Using FlowFilters in Calculation Formulas
End users may want to limit calculations so that they include only those values in
a column that have some specific properties. For example, on our Seminar
Statistics form, we want to sum up the total price of a seminar four different
times, for four different, specific time periods. This is possible if the application
has been designed to take advantage of SumIndexField Technology (SIFT) using
FlowFilter fields in connection with the FlowFields. FlowFilters are used to
determine how much information the system will include when it calculates the
contents of FlowFields.

When defining a FlowField, you create a calculation formula that can consist of
constants, of values from ordinary fields and of filters given as parameters in
FlowFilter fields. FlowFilter fields are fields in which the end user can enter a
filter value that will affect the calculation of a FlowField.

For an example of how to implement a statistics form using the FlowFields and
FlowFilter fields in a master table, let's look at Table 18 Customer and Form 151
Customer Statistics.

The first line of the Customer Statistics Sales tab shows the Sales (LCY) for
four different time periods: the current month, This Year, Last Year and To Date.
The data shown in these fields is generated by means of a FlowField − Sales
(LCY) − and a number of FlowFilters in the Customer table. The CalcFormula
shown in the Sales (LCY) field properties uses a number of FlowFilters, but to
simplify we'll just consider the Date Filter.

In the OnAfterGetRecord trigger of the Customer Statistics form, the Date Filter
is set for each of the desired time periods using the Date Filter-Calc codeunit.
The CALCFIELDS function is then used for each Date Filter to calculate a value
for the Sales (LCY). We will use similar logic when creating the Seminar
Statistics form.

For more information on SIFT, FlowFields and FlowFilters, please refer to the
Application Designer's Guide.

Page 187

Microsoft Navision Development II − C/SIDE Solution Development

Test Your Skills − Managing Seminar Statistics − Diagnosis

Description
Our client's functional requirements provide the following description of their
statistical needs:

We would like to be able to see statistical information regarding the total price
for each seminar, broken down into what is chargeable and what is not
chargeable. We would like to see these statistics for different time periods such
as for a month, for Last Year, for This Year and To Date.

From this you can see that we need a new statistics feature that operates on the
seminar detail information. To enable this feature, you must add FlowFields and
FlowFilters to existing tables.

Use Cases
You can characterize the task of creating a statistics feature for the seminar
module with the following use case:

• Managing Seminar Statistics

The following diagram illustrates the use cases:

Page 188

Chapter 7: Managing Statistics

Implementation of Use Case 1 − Managing Statistics

Managing Seminar Statistics − Analysis
Our client's functional requirements describe their need for a statistics feature in
the following way:

You want to see statistical information regarding the total price for each seminar,
broken down into what is chargeable and what is not chargeable. You want to see
these statistics for different time periods such as for a month, Last Year, This
Year and To Date.

From this you can see that the client wants to be able to open a statistics form
from a seminar form. The form should instantly calculate the statistics for the
total price and show it for the four time periods listed.

Purpose
The purpose of the seminar statistics feature is to allow the user to quickly and
easily get an overview of the price statistics for a specific seminar.

Preconditions
A table containing posted seminar detail information must exist.

Postconditions
The result of this use case will be a form that calculates the total price statistics
for a given seminar within four time periods: a month, Last Year, This Year and
To Date.

Main Scenario
Seminar managers will access the seminar statistics from a seminar detail form.
The form will calculate the total price statistics for the seminar for four time
periods: the current month, Last Year, This Year, and To Date.

Page 189

Microsoft Navision Development II − C/SIDE Solution Development

Activity Diagram

Managing Seminar Statistics − Design
The Seminar Statistics form will be accessible from the Seminar Card and
Seminar List forms, and will automatically calculate the statistics for the selected
seminar using the information from the Seminar Ledger Entry.

GUI Design
Create a Seminar Statistics form and make it accessible from the Seminar Card
and the Seminar List forms.

Seminar Statistics (Form 123456714): This form displays statistical
information for one seminar:

Seminar Card (Form 123456700): The Seminar menu button on this form will
be modified to include a new menu item for seminar statistics.

Page 190

Chapter 7: Managing Statistics

Seminar List (Form 123456701): The Seminar menu button on this form will be
modified to include a new menu item for seminar statistics.

Table Design
You need to add FlowFields and FlowFilters to the table that contains seminar
information, table 123456700 Seminar. Also add a key of Seminar No., Posting
Date, Charge Type, Chargeable to table 123456732 Seminar Ledger Entry.

Functional Design
To calculate the total prices, use the FlowFields and FlowFilters added to the
Seminar table.

We want to calculate the Total Price, Total Price (Chargeable) and Total Price
(Not Chargeable) in the Seminar table, using values from the Seminar Ledger
Entry, for four different time periods. To store the totals, use an array of four
dimensions for each of these three prices. Then use the standard DateFilter-Calc
codeunit to calculate date filters for the time periods. With the date filters, we can
filter the Seminar table and calculate the price fields to be shown on the form for
each of the four time periods.

Managing Statistics − Development

Exercise 19 − Creating FlowFields for Sums
1. Add a secondary key of Seminar No., Posting Date, Charge Type,

Chargeable to table 123456732 Seminar Ledger Entry. Set the
property for the key so that the Total Price field is the sum index
field.

2. Add fields to table 123456700 Seminar as follows.

No. Field Name Type Length Comment
20 Date Filter Date FlowFilter
21 Charge Type

Filter
Option FlowFilter; Options:

Instructor,Room,
Participant,Charge

25 Total Price Decimal FlowField; see step 3 below for
the CalcFormula. Must not be
editable.
AutoFormatType=1

26 Total Price
(Not
Chargeable)

Decimal FlowField; see step 4 below for
the CalcFormula. Must not be
editable.
AutoFormatType=1

27 Total Price
(Chargeable)

Decimal FlowField; see step 5 below for
the CalcFormula. Must not be
editable.
AutoFormatType=1

Page 191

Microsoft Navision Development II − C/SIDE Solution Development

3. Set the CalcFormula for the Total Price field so that it calculates the

sum of the Total Price field on the Seminar Ledger Entry table for
the records where the Seminar No. corresponds to the No. field,
where the Posting Date corresponds to the Date Filter and where the
Charge Type corresponds to the Charge Type Filter.

4. Set the CalcFormula for the Total Price (Not Chargeable) field so
that it calculates the sum of the Total Price field on the Seminar
Ledger Entry table for the records where the Seminar No.
corresponds to the No. field, where the Posting Date corresponds to
the Date Filter, where the Charge Type corresponds to the Charge
Type Filter and where the records are not Chargeable.

5. Set the CalcFormula for the Total Price (Chargeable) field so that it
calculates the sum of the Total Price field on the Seminar Ledger
Entry table for the records where the Seminar No. corresponds to
the No. field, where the Posting Date corresponds to the Date Filter,
where the Charge Type corresponds to the Charge Type Filter and
where the records are Chargeable.

Exercise 20 − Creating the Seminar Statistics Form
1. Create form 123456714 Seminar Statistics, based on the Seminar

table. Don't add any fields to this form yet.

2. Define the following global variables for the form:

Name DataType Subtype Length

DateFilterCalc Codeunit DateFilter-Calc
SemDateFilter Text 30
SemDateName Text 30
CurrentDate Date
TotalPrice Decimal
TotalPriceNotChargeable Decimal
TotalPriceChargeable Decimal
i Integer

3. Set the property for all the variables except DateFilterCalc and

CurrentDate so that each variable is an array of four dimensions.

4. Set the property for the form so that it is not editable.

5. Enter code in the appropriate trigger so that after the form gets the
record, the program performs the following tasks:

– Filters the table to the selected seminar.

Page 192

Chapter 7: Managing Statistics

– If the CurrentDate is not the work date, the program sets the
CurrentDate variable to the work date. The program runs the
CreateAccountingPeriodFilter function of the DateFilter-Calc
codeunit with parameters of the first dimensions of the
SemDateFilter and SemDateName, the CurrentDate and 0. It
runs the CreateFiscalYearFilter function of the DateFilter-Calc
codeunit with parameters of the second dimensions of the
SemDateFilter and SemDateName, the CurrentDate and 0. The
program then runs the CreateFiscalYearFilter function of the
DateFilter-Calc codeunit with parameters of the third dimensions
of the SemDateFilter and SemDateName, the CurrentDate and i.

HINT: There is similar code on the Customer Statistics form.

– For each of the dimensions, the program filters the table to
records where the Date Filter corresponds to the value in the
appropriate dimension of the SemDateFilter and calculates the
Total Price, Total Price (Not Chargeable) and Total Price
(Chargeable) fields. The program then sets the value for the
appropriate dimension of the TotalPrice,
TotalPriceNotChargeable and TotalPriceChargeable to the
values in the corresponding fields.

– Filters the table to those records where the Date Filter is before
the CurrentDate.

6. Place the text labels for the Total Price, Total Price (Chargeable),
Total Price (Not Chargeable), This Year, Last Year and To Date
on the form as shown in the GUI design.

7. Place a text box for the "month" label as shown in the GUI design.
Set the property to specify that the source of the text box is the first
dimension of the SemDateName variable. Set the Border and
Focusable properties to No.

8. Place four text boxes in the Total Price row. Set the properties to
specify that the sources of the text boxes are the respective
dimensions of the TotalPrice variable.

9. Place four text boxes in the Total Price (Chargeable) row. Set the
properties to specify that the sources of the text boxes are the
respective dimensions of the TotalPriceChargeable variable.

10. Place four text boxes in the Total Price (Not Chargeable) row. Set
the properties to specify that the sources of the text boxes are the
respective dimensions of the TotalPriceNotChargeable variable.

Page 193

Microsoft Navision Development II − C/SIDE Solution Development

We have finished the Seminar Statistics form, so our last tasks are to make the
form accessible from the two seminar forms.

11. Add the following menu item to form 123456700 Seminar Card
between the Comments and the Extended Texts menu items.

Menu Button Options Comment
 <Separator>
 Statistics (F9) Opens form 123456714 Seminar Statistics

for the selected seminar. The link should
be run whenever the form is updated.

 <Separator>

12. Add the same Statistics menu item to form 123456701 Seminar List
as above.

Managing Statistics − Testing
In order to test the statistics form, you need to have entries in the Seminar Ledger
Entry table with the related posted seminar registrations.

1. Open the Seminar Card and view a seminar that has some posted
registrations. You can verify that the seminar has ledger entries by
selecting SEMINAR→ENTRIES→LEDGER ENTRIES from the Seminar
Card.

2. Select SEMINAR→STATISTICS to open the Seminar Statistics window.
Verify that the totals shown are correct for the different rows and
columns. You may find it convenient to do so by applying a table
filter to the Seminar Ledger Entries window and comparing the
results with the amounts shown in the Seminar Statistics window.

Page 194

Chapter 7: Managing Statistics

Test Your Knowledge
Review Questions

1. What is the purpose of a FlowFilter field?

2. How are FlowFilters used in calculations of FlowFields?

3. What are the advantages of using FlowFields to make calculations?

4. What is the Microsoft Navision standard shortcut for opening a

Statistics form?

Conclusion
Chapter Summary
In this chapter, you created a statistics form for seminars to sum up the total price
in four different time periods. You also made this form available from the
seminar forms.

Positioning − Where do you go from here?
You are now ready to add dimensions to the existing features in our module.

Page 195

Microsoft Navision Development II − C/SIDE Solution Development

Quick Interaction: Lessons Learned
Take a moment to write down three Key Points you have learned from this
chapter:

1.

2.

3.

Page 196

Chapter 8: Managing Dimensions

CHAPTER 8: MANAGING DIMENSIONS
This chapter contains the following sections:

• Introduction
• Dimensions
• Using Microsoft® Business Solutions−Navision® Developer's Toolkit
• Test Your Skills

– Diagnosis
– Managing Dimensions in Master Files
– Managing Dimensions in Registration
– Managing Dimensions in Seminar Posting
– Managing Dimensions in Invoicing

• Test Your Knowledge
• Conclusion

Page 197

Microsoft Navision Development II − C/SIDE Solution Development

Introduction

Positioning − What is the Starting Point?
You have created a functioning seminar module with:

• Master tables and forms
• Registration functionality
• Posting routines
• Reports
• Statistics

You are now ready to add the standard dimensions functionality to the module.

Preconditions
To add dimensions functionality to the seminar module, you must have master
tables and forms, tables and forms for seminar registration, and the posting
routine to post seminar registrations.

Further preconditions are knowledge of the following areas:

• Writing internal documentation
• Exporting and importing objects
• Working with event triggers
• Working with complex data types and their member functions
• Creating journal and document posting routines
• Debugging code
• Programming for low-impact on the application
• Using report event triggers
• Creating processing-only reports

Business Goals
In this story, your goal is to improve data analysis capabilities in the seminar
module by adding dimensions.

Educational Goals
By completing this story, you will have learned or reacquainted yourself with the
following:

• Working with dimensions

Page 198

Chapter 8: Managing Dimensions

Dimensions
Dimensions are data you add to an entry to act as a marker for the program,
which can group entries with similar characteristics for analysis purposes. Every
entry in the program can have dimensions: master files, transaction document
headers and lines, journal lines, ledger entries, and posted documents and their
lines.

We use the term "dimension" to describe how analysis occurs. A two-
dimensional analysis, for example, could be analysis of sales for an area.
However, by using more than two dimensions when creating an entry, you can
carry out a more complex analysis later, for example, sales for each sales
campaign for each customer group in each area.

Each dimension can have an unlimited number of dimension values. For
example, a dimension called Department can have dimension values of Sales,
Administration, Purchasing, and so on. The user defines and tailors these
dimensions and values to every company's needs.

There are three types of dimensions:

Global: When you set up dimensions in the G/L Setup, you can set up two of
them to be global dimensions. You can use this dimension throughout the
program as filters for G/L Entries and on reports, account schedules and batch
jobs.

Shortcut: You can enter shortcut dimensions on journal and document lines.
These lines have eight fields that are designated for dimensions. The first two are
always the global dimensions, but the remaining six can be selected from those
set up as shortcut dimensions in the G/L Setup. You can also specify dimensions
that are not set up as shortcut dimensions, but these must be set up in a separate
Dimensions window for the header or line.

Budget: You can define four dimensions for each budget.

When you set up a global, shortcut or budget dimension, the program
automatically renames all fields that use the dimension type with the code
caption that you specify in the dimension setup.

Page 199

Microsoft Navision Development II − C/SIDE Solution Development

Where dimensions are stored depends on the type of entry. The following table
shows different tables that contain dimensions with the types of entries with
which they are associated.

Dimension Table Type of Entry
352 Default Dimension Master file records
355 Ledger Entry Dimension Ledger entries
356 Journal Line Dimension Journal lines
357 Document Dimension Document headers and lines
358 Production Document Dimension Production orders, lines and

components
359 Posted Document Dimension Posted document headers and lines
361 G/L Budget Dimension Budget entries

Code Walkthrough − Dimension Management Codeunit
Before you begin development, take a look at how the DimensionManagement
codeunit works.

Codeunit 408 − Dimension Management contains functions that help populate
the Dimension tables.

Look at the "TypeToTableID" functions (TypeToTableID1, TypeToTableID2,
etc.). These functions take in one option parameter and then return the table ID of
the table related to that parameter (if "G/L Account" was passed in, for example,
the function would return table ID 15). These functions are used, through a series
of other functions, to populate the dimension tables where the table ID is needed.
Without them, we would have to write a similar case statement every time we
needed to get the table ID of an option field. We l add our own TypeToTableID
function for table 95000 Seminar to return the table according value of the Type
option.

Now look at the SetupObjectNoList function. This function sets a temporary
record object with a list of tables that use dimensions. You can see this function
used in Table 352, in the OnLookup trigger of the Table ID field. Modify
SetupObjectNoList to include the master tables.

Other functions of note in this codeunit are ValidateDimValueCode and
SaveDefaultDim. ValidateDimValueCode takes in two parameters, the field
number and the dimension value. The function checks to see that the dimension
is valid, and returns an error if it is not. SaveDefaultDim saves the dimension in
the default dimension table. If these functions were not available, then you would
need to create these functions in every table necessary.

Page 200

Chapter 8: Managing Dimensions

You will be using a large number of the DimensionManagement functions in
adding Dimensions functionality to the Seminar module. In general, there are
functions that correspond to each type of Dimension table for getting default
dimensions, updating, saving, deleting, inserting, and validating consistency and
combinations of dimensions.

Using Navision Developer's Toolkit
When developing in Microsoft Navision, you often need information such as
where and how often a certain table or field is used. This kind of analysis is not
possible in the Object Designer, so we have the Microsoft Navision Developer's
Toolkit to aid in analyzing databases, as well as comparing and merging
databases.

In the Developer's Toolkit, you can import objects and analyze them by searching
for certain words or phrases, finding out where a certain object, field or key is
used, or finding the relations between objects. You can also compare two or three
versions of a database to see the differences.

The Developer's Toolkit works with the text version of a Microsoft Navision
database or object by parsing the different elements and storing the results in its
own database. The Developer's Toolkit is read-only, although you can export
objects and databases as text files. The database that the Toolkit uses is a
Navision C/SIDE database, which is not the same as a Microsoft Navision
database. To read from and write to the database, the Developer's Toolkit uses
C/FRONT® , which is the toolkit that makes it possible to develop applications in
the C programming language that access a C/SIDE database. There is more
information about C/FRONT in the appendix of this manual.

With Developer's Toolkit you can also directly access one or more Navision
clients that are open on your computer. Through this access, you can quickly
import objects, update from or to the client and export objects using an export
worksheet.

Page 201

Microsoft Navision Development II − C/SIDE Solution Development

Some of the features of the Developer's Toolkit include:

• The ability to view object relationships in tree or diagram form
• The ability to search the database for a word or phrase using Source

Finder
• The ability to compare and merge databases or simply to compare

two versions of a database
• The ability to list all a specific object's relations to or from other

objects
• The ability to list all the places where a specific object (or an element

of an object such as a field, key, trigger or procedure) is used
• The ability to view the method flow in C/AL

Page 202

Chapter 8: Managing Dimensions

Test Your Skills − Managing Dimensions − Diagnosis
Description
The seminar module is missing a standard feature: dimensions.

Your task for this story is to add dimensions functionality to the seminar module.
This requires making dimensions available from master files, seminar
registrations, seminar posting, and invoicing.

Use Cases
We can divide the analysis and implementation phases of this story into the
following use cases:

• Managing Dimensions in Master Files
• Managing Dimensions in Seminar Registration
• Managing Dimensions in Seminar Posting
• Managing Dimensions in Invoicing

The following use case diagram illustrates how the use cases relate to one
another:

Page 203

Microsoft Navision Development II − C/SIDE Solution Development

Implementation of Use Case 1 − Managing Dimensions in
Master Files

Managing Dimensions in Master Files − Analysis
In accordance with Microsoft Navision standards, the seminar master files should
be associated with default dimensions. The master file dimensions then flow to
the transactions in which the master data is used, and these document dimensions
eventually flow to the ledger entries and posted document dimensions.

Define the following dimensions for seminars, rooms and instructors.

Purpose
The purpose of managing dimensions on the master file level is to enable
analysis of master data.

Preconditions
Tables and forms for seminar master data must exist.

Postconditions
The result of this use case is that the user can define default dimensions for
master data.

Main Scenario
When the seminar managers define master data, they will also define default
dimensions for the data, as appropriate.

Page 204

Chapter 8: Managing Dimensions

Activity Diagram

Managing Dimensions in Master Files − Design
To enable dimensions for master files, you need to make changes to the master
tables and forms, as well as to the codeunits that manage dimensions.

GUI Design
Add menu items for dimensions to the Seminar Card (Form 123456700),
Seminar Room Card (Form 123456703) and Instructors (Form 123456705) forms
from which you define the master data.

Page 205

Microsoft Navision Development II − C/SIDE Solution Development

Functional Design
Include dimension entries for master files into the Default Dimension table. We
must make some modifications to this table and to the DimensionManagement
codeunit so that they can accept entries from the Seminar, Seminar Room, and
Instructor tables.

When the user creates a new record in a master table, the program should insert
or update the Default Dimensions. Likewise, when the user deletes a record, the
program should automatically delete the associated dimensions.

ValidateShortcutDimCode: When the user enters a value in a dimension field,
we will use this function to validate the entry. The DimensionManagement
codeunit has a function called ValidateDimValueCode that can help us do this.

Table Design
We will add dimension fields to the following tables:

• Table 123456700 Seminar
• Table 123456702 Seminar Room
• Table 123456703 Instructor
• We will modify the code in Table 352 Default Dimension so that the

table can accept entries from the seminar master files.

Managing Dimensions in Master Files − Development
You can now begin development.

Page 206

Chapter 8: Managing Dimensions

Exercise 21 − Modifying the DimensionManagement Codeunit
The first step in enabling dimensions for master files is to modify the
DimensionManagement codeunit.

Open codeunit 408 DimensionManagement and look at the functions. Notice a
number of generic functions that have parameters like TableID and DocType, so
you can use them for any table. There are also functions like TypeToTableID2
that you can use for one specific table. We will begin modifying codeunit 408 by
adding a table-specific function.

1. Create a function called TypeToTableID123456700 that takes a
parameter called Type with a data type of Option and the options
Resource, G/L Account. The function returns an integer.

2. Enter code in the function trigger so that the function returns the ID
of the Resource table when the Type is Resource, and returns the ID
of the G/L Account table when the Type is G/L Account.

Now modify the SetupObjectNoList function so that it takes into account the
three tables Seminar, Seminar Room, and Instructor.

3. Change the Dimensions property of the TableIDArray variable from
20 to 23.

4. Comment out the existing code in the function trigger that sets the
NumberOfObjects variable to 20 and add code so that the
NumberOfObjects variable is set to 23. Set the values of
TableIDArray[21]-[23] to correspond to the Seminar, Seminar
Room, and Instructor tables.

Page 207

Microsoft Navision Development II − C/SIDE Solution Development

Exercise 22 − Modifying the Tables and Forms for Dimensions
in Master Files
We are now ready to modify the master file tables and forms to enable
dimensions.

1. Add two new fields to table 123456700 Seminar as follows:

No. Field Name Type Length Comment
15 Global

Dimension 1
Code

Code 20 Caption Class is 1,1,1.
Relation to the Code field on the
Dimension Value table where the
Global Dimension No. is 1.

16 Global
Dimension 2
Code

Code 20 Caption Class is 1,1,2.
Relation to the Code field on the
Dimension Value table where the
Global Dimension No. is 2.

2. Create a new function for the table called ValidateShortcutDimCode.

This function takes two parameters: an integer called FieldNumber
and a code variable with a length of 20 called ShortcutDimCode,
which is passed by reference.

3. Enter code in the function so that it runs the ValidateDimValueCode
and SaveDefaultDim functions from the DimensionManagement
codeunit and modifies the table.

4. Enter code in the appropriate triggers so that when the user enters or
changes a value in the Global Dimension Code 1 or Global
Dimension Code 2 fields, the program runs the
ValidateShortcutDimCode function (the FieldNumber values are 1
and 2, respectively).

5. Enter code in the appropriate trigger so that when the user inserts a
new record to the table, the program runs the UpdateDefaultDim
function from the DimensionManagement codeunit.

6. Enter code in the appropriate trigger so that when the user deletes a
record from the table, the program runs the DeleteDefaultDim
function from the DimensionManagement codeunit.

7. Add the same global dimension fields to table 123456702 Seminar
Room that you added to the Seminar table. Add these fields as the
last two fields of the table. Add the same functions and code
modifications as for the Seminar table.

8. Add the same global dimension fields to table 123456703 Instructor
that you added to the Seminar and Seminar Room tables. Add these
fields as the last two fields of the table. Add the same functions and
code modifications as for the Seminar and Seminar Room tables.

Page 208

Chapter 8: Managing Dimensions

When you add dimensions to any master file in Microsoft Navision, the
dimensions are stored in table 352 Default Dimension. We will modify this table
so that it can accept entries from the seminar master files.

9. Enter code in the UpdateGlobalDimCode function trigger in the
Default Dimension table for each of the three master tables, Seminar,
Seminar Room and Instructor, so that, depending on the TableID, the
program gets the appropriate record from the appropriate table, sets
the appropriate Global Dimension Code field to the NewDimValue
and modifies the table.

10. Add the menu items for Dimensions to the Seminar Card and
Seminar Room Card forms as follows:

Menu Button Options Comment
Seminar Dimensions

(SHIFT + CTRL + D)
Opens the form 540 Default
Dimensions for the selected entry.
The link should run whenever you
update the form.

11. Add the menu button and menu items for Dimensions to the

Instructors form as follows:

Menu Button Options Comment
Instructor Dimensions

(SHIFT + CTRL + D)
Opens the form 540 Default
Dimensions for the selected entry.
The link should run whenever you
update the form.

Page 209

Microsoft Navision Development II − C/SIDE Solution Development

Implementation of Use Case 2 − Managing Dimensions in
Registration

Managing Dimensions in Registration − Analysis
The next step in enabling dimensions functionality for the seminar module is to
set up the seminar registrations and posted registrations to accept dimensions as
well.

Purpose
The purpose of managing dimensions on the registration tables and forms is so
that users can perform analyses on the registration data using the dimensions to
group the information properly.

Preconditions
Tables and forms for seminar registrations must exist. Tables and forms for the
posted seminar registrations must exist. Tables, forms and codeunits for the
dimension functionality must exist.

Postconditions
The result of this use case is that the user will be able to define dimensions for
seminar registration headers and lines, which then flow to the dimensions for the
posted registration entries upon posting.

Main Scenario
When creating a seminar registration, the seminar managers enter dimension
information for the header and lines. After posting the registration, the seminar
managers can enter or change dimension information on the posted registration
header and lines.

Page 210

Chapter 8: Managing Dimensions

Activity Diagram

Managing Dimensions in Registration − Design
As was described in the Diagnosis section, transaction documents and lines use
shortcut dimension codes. Enabling dimensions in transaction documents means
setting up the shortcut dimension codes for the header and lines, and writing code
so that the dimensions from the seminar, seminar room and instructor chosen for
the seminar registration are also included. You will also enable dimensions on
the posted seminar registration tables and forms.

GUI Design
Add fields and menu items for dimensions to the forms where you define the
master data.

Page 211

Microsoft Navision Development II − C/SIDE Solution Development

Seminar Registration Form (Form 123456710) and Seminar Registration
Subform (Form 123456711): Add the eight shortcut dimension code fields to
the subform as shown in the following screenshot, starting with the Department
Code field. These fields should not be visible until the user selects them using
Show Column.

Posted Seminar Registration (Form 123456734) and Posted Seminar Reg.
Subform (Form 123456735): Add two shortcut dimension code fields to the
subform, which are shown in the following screenshot as the Project Code and
Department Code fields. These fields should not be visible until the user selects
them using Show Column.

Page 212

Chapter 8: Managing Dimensions

Functional Design
You need functions in the Seminar Registration Header and Seminar Registration
Line tables to get default dimensions, validate dimensions, insert dimensions and
delete dimensions. We can use standard functions from the
DimensionManagement codeunit to do most of the real work, but we will need
functions to call these standard functions.

ValidateShortcutDimCode: As with the master files, we will create this
function to validate and save the dimensions, using the SaveDefaultDim function
from the DimensionManagement codeunit.

CreateDim: For each of the tables mentioned previously, this function should get
the default dimensions for certain key dimension fields by running the
GetDefaultDim function from the DimensionManagement codeunit. How many
and for which fields the function retrieves default dimensions depends on the
table. For the Seminar Registration Header, these fields will be Seminar Code,
Instructor Code, Room Code and Job No. For the Seminar Registration Line,
there will be only one field: Bill-To Customer No.

Table Design
Add new fields for dimensions to the following tables:

• Table 123456710 Seminar Registration Header
• Table 123456711 Seminar Registration Line
• Table 123456718 Posted Seminar Reg. Header
• Table 123456719 Posted Seminar Reg. Line

Modify the code in Table 357 Document Dimension so that the table can accept
entries from the seminar registrations.

Page 213

Microsoft Navision Development II − C/SIDE Solution Development

Managing Dimensions in Registration − Development
Exercise 23 − Modifying the Tables for Dimensions in Seminar
Registrations
Begin by adding the necessary fields and code to the seminar registration table.

1. Add the shortcut dimension fields to table 123456710 Seminar
Registration Header as follows:

No. Field Name Type Length Comments
35 Shortcut

Dimension 1
Code

Code 20 Caption Class is 1,2,1.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 1.

36 Shortcut
Dimension 2
Code

Code 20 Caption Class is 1,2,2.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 2.

2. Create a new function for the table called ValidateShortcutDimCode.

This function takes two parameters: an integer called FieldNumber
and a code variable with a length of 20 called ShortcutDimCode,
which is passed by reference.

3. Enter code in the function trigger so that it runs the
ValidateDimValueCode function from the DimensionManagement
codeunit. If the No. is not blank, the function runs the SaveDocDim
function from the DimensionManagement codeunit; otherwise, it
runs the SaveTempDim function.

4. Enter code in the appropriate triggers so that when the user enters or
changes a value in the new Shortcut Dimension Code fields, the
program runs the ValidateShortcutDimCode function (the
FieldNumber values are 1 and 2, respectively).

For seminar registrations, get the default dimensions from the Seminar, Job,
Seminar Room and Instructor that the user assigns to the registration and assign
these to the registration's Document Dimensions. Create a CreateDim function to
do this for us.

5. Create a new function called CreateDim in the Seminar Registration
Header table. This function takes eight parameters: four integers
called Type1, Type2, Type3 and Type 4, and four code variables of
length 20 called No1, No2, No3 and No4. The order of the
parameters is Type1, No1, Type2, No2, and so forth.

Page 214

Chapter 8: Managing Dimensions

6. In C/AL Locals, define an integer array variable named TableID with
10 dimensions and a code array variable named No of length 20 with
dimensions. You will only use 4 of the 10 dimensions but you must
specify 10 due to the parameters of the GetDefaultDim function in
the Dimension Management codeunit.

7. Enter code in the CreateDim function trigger so that the function
assigns the Type and No parameters to corresponding dimensions of
the TableID and No variables. The function then clears both
Shortcut Dimension Code fields and runs the GetDefaultDim
function from the DimensionManagement codeunit. If the No. is not
blank, the function runs the UpdateDocDefaultDim function of the
DimensionManagement codeunit.

Now use the CreateDim function to assign the default dimensions from the
Seminar, Job, Seminar Room and Instructor whenever you enter or change the
default dimensions.

8. Enter code in the appropriate triggers so that when the user changes
the Seminar Code, Instructor Code, Room Code or Job No. fields,
the program runs the GetDimensions function of the Document
Dimension table, runs the CreateDim function for the Seminar
Code, Instructor Code, Room Code and Job No., and runs the
UpdateAllLineDim function from the Document Dimension table.

Next, add code to ensure that when the user creates or deletes a seminar
registration, the program automatically creates or deletes dimensions as
appropriate.

9. Enter code in the appropriate trigger so that when the user creates a
new Seminar Registration Header, the program runs the
InsertDocDim function from the DimensionManagement codeunit.

10. Enter code in the appropriate trigger so that when the user deletes a
Seminar Registration Header, the program deletes all associated
dimensions by running the DeleteDocDim function from the
DimensionManagement codeunit.

Page 215

Microsoft Navision Development II − C/SIDE Solution Development

The next modifications will be to the Seminar Registration Line table.

11. Add the shortcut dimension fields to table 123456711 Seminar
Registration Line as follows:

No. Field Name Type Length Comments
15 Shortcut

Dimension 1
Code

Code 20 Caption Class is 1,2,1.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 1.

16 Shortcut
Dimension 2
Code

Code 20 Caption Class is 1,2,2.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 2.

12. Create a new function for table 123456711 called

ValidateShortcutDimCode. As you did for the
ValidateShortcutDimCode function in the Seminar Registration
Header, add parameters and code so that this function validates and
saves the document dimensions for the dimension field passed to it.

13. Enter code in the appropriate triggers so that when the user enters or
changes a value in the Shortcut Dimension Code fields, the
program runs the ValidateShortcutDim function (the FieldNumber
values are 1 and 2, respectively).

For seminar registration lines, get the default dimensions from the Seminar
Registration Header. Create a CreateDim function to do this for you.

14. Create a new function called CreateDim in the Seminar Registration
Line table. As mentioned in the functional design, the Seminar
Registration Line table has one key dimension field from which we
must get default dimensions: the Bill-To Customer No. The
CreateDim function will be similar to the CreateDim function in the
Seminar Registration Header, except that it takes only two
parameters: an integer called Type1 and a code variable of length 20
called No1.

15. Enter code in the function trigger so that the function assigns the
parameters to a corresponding local integer variable and local code
variable. The function clears both Shortcut Dimension Code fields
and runs the GetPreviousDefaultDocDim and GetDefaultDim
functions from the DimensionManagement codeunit. If the Line No.
is not 0, the function runs the UpdateDocDefaultDim function of the
DimensionManagement codeunit.

16. Enter code in the appropriate trigger so that when the user enters or
changes the Bill-To Customer No., the program runs the CreateDim
function, passing the Customer table number as the first parameter.

Page 216

Chapter 8: Managing Dimensions

Now create two functions, LookupShortcutDimCode and
ShowShortcutDimCode, which shows information to the user.

17. Create a new function called LookupShortcutDimCode that takes
two parameters: an integer called FieldNumber and a code variable
of length 20 called ShortcutDimCode, which is passed by reference.

18. Enter code in the LookupShortcutDimCode function trigger so that
the function runs the LookupDimValueCode function from the
DimensionManagement codeunit. If the Line No. of the record is not
0. The function runs the SaveDocDim function from the
DimensionManagement codeunit; otherwise, it runs the
SaveTempDim function of the DimensionManagement codeunit.

19. Create a new function called ShowShortcutDimCode that takes one
parameter: a code variable of length 20 that is passed by reference,
called ShortcutDimCode. This parameter is an array of 8 dimensions.

20. Enter code in the ShowShortcutDimCode function trigger so that if
the Line No. of the record is not 0, the function runs the
ShowDocDim function of the DimensionManagement codeunit;
otherwise, it runs the ShowTempDim function of the
DimensionManagement codeunit.

You need a function that will display the line dimensions when requested by the
user.

21. Create a new function called ShowDimensions.

22. Enter code in the ShowDimensions function trigger so that the
function makes sure there is a Document No. and Line No. and then
shows the corresponding lines from the Document Dimension table
in the Document Dimensions form.

HINT: After you have filtered the Document Dimension table to the appropriate
records, use the SETTABLEVIEW function for the Document Dimensions form before
running it.

As in the Seminar Registration Header table, you need to ensure that when the
user creates or deletes a Seminar Registration Line, the program automatically
handles the associated dimensions appropriately.

23. Enter code in the appropriate triggers so that when the user creates a
new Seminar Registration Line, the program runs the InsertDocDim
function from the DimensionManagement codeunit, and when the
user deletes a record, the program runs the DeleteDocDim function
from the DimensionManagement codeunit.

Lastly, before you can finish with the tables, you must modify the Document
Dimension table so that it can accept dimensions from the seminar registrations.

Page 217

Microsoft Navision Development II − C/SIDE Solution Development

24. Define local record variables for the UpdateGlobalDim function of
table 357 Document Dimension, for the Seminar Registration Header
and Seminar Registration Line tables. Set the IDs for these variables
to 123456700 and 123456701, respectively.

25. Add to the existing code in the UpdateGlobalDim function trigger.
Do this so that for each of the three record variables you just added,
(if the TableID corresponds to the table ID for that table), the
program gets the corresponding record. This sets either the Shortcut
Dimension 1 Code or the Shortcut Dimension 2 Code (depending on
the GlobalDimCodeNo value passed to the function) to the
NewDimValue, and modifies the record.

Modify the UpdateLineDim function so that if the user changes a dimension on
the Seminar Registration Header, the function changes the dimensions on any
associated Seminar Registration Line.

26. In table 357 Document Dimension, modify the UpdateLineDim
function so that if the Table ID is for the Seminar Registration
Header, the function filters the document dimensions to those that
have a Table ID for the Seminar Registration Line table. The
function then looks for any associated Seminar Registration Line
records. If it finds any, and the user wants to update those lines, the
function deletes the old dimensions and inserts the new updated
Document Dimension record that was passed to it, using the
InsertNew function.

HINT: Look at how the function handles the case where the Table ID is Sales Header
or Purchase Header.

27. Modify the UpdateAllLineDim function in a similar way so that if
the TableNo passed to it is for the Seminar Registration Header, the
function updates the dimensions for associated Seminar Registration
Line records.

Now that the seminar registration tables are ready for dimensions, you must
enable dimensions on the forms.

Page 218

Chapter 8: Managing Dimensions

Exercise 24 − Modifying the Forms for Dimensions in Seminar
Registrations
Define functions in the forms to make it possible to show all the dimensions for a
registration header or line, rather than just those defined as the global or shortcut
dimensions on the tables.

1. In form 123456711 Seminar Registration Subform, create a global
code variable ShortcutDimCode with a length of 20. Define this
variable as an array of 8 dimensions.

2. Define a new function for the form called ShowDimensions for the
form. Enter code in the function trigger so that this function simply
runs the ShowDimensions function for the current record.

3. Define a new function called UpdateForm that takes a parameter of a
Boolean variable called SetSaveRecord. Enter code in the function
trigger so that this function simply updates the current form, running
the form update trigger code if SetSaveRecord is TRUE.

4. Enter code in the appropriate triggers so that the program performs
the following:

– When the program gets a record for the form or the user enters or
changes the Bill-To Customer No., the program updates the
ShortcutDimCode variable with the document dimensions by
calling the ShowShortcutDimCode function.

– After the program gets the record, it updates the controls on the
form.

– When the user goes to a new record, it clears the
ShortcutDimCode variable.

5. Add the eight Shortcut Dimension Code fields to the form as shown

in the GUI design. First, add the Shortcut Dimension 1 Code and
Shortcut Dimension 2 Code fields to the form and then add six text
boxes. The caption classes for these six text boxes are '1,2,x', where
x is the respective number of the field (three through to eight). The
sources for these fields are the respective dimensions of the
ShortcutDimCode variable (three through to eight).

– For each of these fields, enter code so that when the user enters
or changes a value, the program runs the
ValidateShortcutDimCode function for the corresponding
ShortcutDimCode dimension value.

– For each of these fields, enter code so that when the user
performs a lookup on the field, the program runs the
LookupShortcutDimCode function for the corresponding
ShortcutDimCode dimension value.

Page 219

Microsoft Navision Development II − C/SIDE Solution Development

6. In form 123456710 Seminar Registration, set the property so that the
form is updated when it is activated.

7. Enter code in the appropriate trigger so that the form is updated
when the user enters or changes a value in the Seminar Code,
Instructor Code, Room Code or Job No. fields.

8. Add the menu button and menu items to form 123456710 Seminar
Registration as shown below. Add code to the appropriate trigger so
that when the user selects the Dimensions menu item, the program
runs the ShowDimensions function of the subform.

Menu Button Options Comments
Registration Dimensions Opens the form 546 Document

Dimensions for selected No.,
where the Line No. is 0. The link
should run whenever the form is
updated.

Line Dimensions
(CTRL + SHIFT + D)

Runs code in the OnPush trigger
to show the line.

Now modify the posted registration tables and forms to enable dimensions. The
user is not able to enter or change dimensions for posted documents, so you
simply make the posted dimensions available for the user to view.

Page 220

Chapter 8: Managing Dimensions

Exercise 25 − Modifying the Tables and Forms for Dimensions
in Posted Seminar Registrations

1. Add the shortcut dimension fields to Table 123456718 Posted
Seminar Reg. Header as follows:

No. Field Name Type Length Comments
35 Shortcut

Dimension 1
Code

Code 20 Caption Class is 1,2,1.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 1.

36 Shortcut
Dimension 2
Code

Code 20 Caption Class is 1,2,2.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 2.

2. Enter code in the appropriate trigger so that when the user deletes a

Posted Seminar Reg. Header, the program deletes the associated
posted document dimensions by calling the DeletePostedDocDim
function from the DimensionManagement codeunit.

3. Add the shortcut dimension fields to Table 123456719 Posted
Seminar Reg. Line as follows:

No. Field Name Type Length Comments
15 Shortcut

Dimension 1
Code

Code 20 Caption Class is 1,2,1.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 1.

16 Shortcut
Dimension 2
Code

Code 20 Caption Class is 1,2,2.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 2.

4. Create a new function called ShowDimensions. Enter code in the

function trigger so that the function tests that a Document No. and
Line No. exist. If so, the function filters the Posted Document
Dimension table to the records corresponding to the Posted Seminar
Reg. Line and shows those records in the Posted Document
Dimension form.

5. As you did for the Posted Seminar Reg. Header table, enter code in
the appropriate trigger so that when the user deletes a Posted
Seminar Reg. Line record, the program deletes the associated Posted
Document Dimension records.

Page 221

Microsoft Navision Development II − C/SIDE Solution Development

6. In form 123456735 Posted Seminar Reg. Subform, create a function
called ShowDimensions. Enter code in the function trigger so that it
runs the ShowDimensions function of the current record.

7. Add the text boxes and labels for the new Shortcut Dimension
Code fields as shown in the GUI design.

8. In form 123456734 Posted Seminar Registration, set the property to
specify that the form should be updated when activated.

9. Add the new Dimensions menu item to the Registration menu button
and the new Line menu button as follows:

Menu
Button

Options Comments

Registration Dimensions Opens the form 547 Posted Document
Dimensions for the selected No., where
the Line No. is 0. The link should run
whenever the form is updated.

Line Dimensions
(CTRL + SHIFT + D)

Runs code in the OnPush trigger to show
the line dimensions (runs the
ShowDimensions function of the Posted
Seminar Reg. Subform form).

Page 222

Chapter 8: Managing Dimensions

Implementation of Use Case 3 − Managing Dimensions in
Seminar Posting

Managing Dimensions in Seminar Posting − Analysis
You have added dimension functionality to seminar registration tables and forms
and to posted seminar registration tables and forms. What you are missing now is
a means of bringing dimensions from seminar registrations to posted seminar
registrations. You also need dimensions in the ledger entries. Therefore, you
must now add and modify code in the seminar posting process to make this
happen.

Purpose
The purpose of managing dimensions in the seminar posting process is to transfer
the dimensions for seminar registrations to the posted seminar registrations.

Preconditions
The tables and forms for seminar registrations and posted seminar registrations
must exist and must be set up for dimensions. The seminar journal lines and
ledger entries and the seminar posting process must exist.

Postconditions
The result of this use case is a seminar posting process that transfers dimensions
from seminar registrations to posted seminar registrations and carries the global
dimensions to the seminar ledger entries.

Main Scenario
When the seminar managers post seminar registrations, the dimensions defined
for those registrations are transferred automatically to the posted seminar
registrations by the posting process. Furthermore, the global dimensions are
transferred to the seminar ledger entries.

Page 223

Microsoft Navision Development II − C/SIDE Solution Development

Activity Diagram

Managing Dimensions in Seminar Posting − Design
To enable the transfer of dimensions in the posting process, you add dimension
fields to the journal and ledger entry tables. Then add the code to transfer the
dimensions from seminar registration headers and lines to the posted registration
headers and lines.

GUI Design
The only modifications to the user interface will be to the Seminar Ledger
Entries form.

Page 224

Chapter 8: Managing Dimensions

Seminar Ledger Entries (Form 123456721): To accommodate dimensions, add
global dimension code fields. These fields appear in the following screenshot as
the Department Code and Project Code fields.

Functional Design
In the Seminar Jnl.-Check Line codeunit, add code to validate the dimensions in
the Seminar Journal Line.

In the Seminar Jnl.-Post Line codeunit, add code to transfer the journal line
dimensions to the ledger entry dimensions.

In the Seminar-Post codeunit, add code to transfer the dimensions from the
Document Dimension records to the Posted Document Dimension. For the
Seminar Registration Header, the program should move the Seminar Code, Job
No., Room Code and Instructor Code dimensions. For the Seminar
Registration Line, the program should move the Bill-To Customer No.
dimension.

Table Design
Add fields for Shortcut Dimensions to Table 123456731 Seminar Journal Line.

Add fields for Shortcut Dimensions to Table 123456732 Seminar Ledger Entry.

Page 225

Microsoft Navision Development II − C/SIDE Solution Development

Managing Dimensions in Seminar Posting − Development

Exercise 26 − Modifying the Tables, Codeunits and Forms for
Dimensions in Seminar Posting

1. Add the following fields to Table 123456731 Seminar Journal Line:

No. Field Name Type Length Comments
25 Shortcut

Dimension 1
Code

Code 20 Caption Class is 1,2,1.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 1.

26 Shortcut
Dimension 2
Code

Code 20 Caption Class is 1,2,2.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 2.

2. Add the following fields to Table 123456732 Seminar Ledger Entry:

No. Field Name Type Length Comments
31 Global

Dimension 1
Code

Code 20 Caption Class is 1,2,1.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 1.

32 Global
Dimension 2
Code

Code 20 Caption Class is 1,2,2.
Relation to the Code field on the
Dimension Value table, where the
Global Dimension No. is 2.

Now that you have the necessary fields, make the changes to the three main
seminar posting codeunits. The first changes you make will be to the Seminar
Jnl.-Check Line codeunit.

Before checking the lines, copy the shortcut dimension values from the Seminar
Journal Line to a Journal Line Dimension record.

3. Delete the code in the OnRun trigger of codeunit 123456731
Seminar Jnl.-Check Line.

Page 226

Chapter 8: Managing Dimensions

4. Enter code in the OnRun trigger so that if the Shortcut Dimension 1
Code in the Seminar Journal Line record is not empty, the program
copies the Seminar Journal Line table ID and Line No. to a
temporary Journal Line Dimension record variable. The program
copies the Global Dimension 1 Code value from the G/L Setup to
the Dimension Code field and the Shortcut Dimension 1 Code
value from the Seminar Journal Line to the Dimension Value
Code on the Journal Line Dimension record. The program then
inserts the Journal Line Dimension record. Enter code to do the same
with a new Journal Line Dimension record for the Shortcut
Dimension 2 Code field on the Seminar Journal Line.

5. Add code in the OnRun trigger to run the RunCheck function with
two parameters: the current record and the Journal Line Dimension
record just created.

You are now ready to make the changes to the RunCheck function to check the
dimensions passed to it.

6. As you can see from the previous step, you must add a parameter to
the RunCheck function. Add a parameter (passed by reference) of a
record variable for the Journal Line Dimension table.

7. Enter code in the function trigger so that after the function checks the
Document Date, it loads the table IDs of the Seminar, Job, Seminar
Room, Instructor and Customer tables into a local integer array
variable (with ten dimensions). The function then loads the Seminar
Code, Job No., Room Code, Instructor Code and Bill-To
Customer No. values into the corresponding dimensions of a local
code array variable (with ten dimensions). Using these two array
variables, the function checks the dimensions by running the
CheckJnlLineDimValuePosting function from the
DimensionManagement codeunit. If this function returns false, the
function shows an error. If the Line No. is not 0, this can be a
specific error to help the user see exactly where the error occurred.

HINT: You can use the GetDimValuePostingErr function from the
DimensionManagement codeunit to help create the error message.

Now modify codeunit 123456732 Seminar Jnl.-Post Line to transfer the
dimensions to the ledger entries.

8. In the OnRun trigger, enter the code you entered into the OnRun
trigger of the Seminar Jnl.-Check Line codeunit. This code loads and
inserts two Journal Line Dimension records with information from
the Shortcut Dimension Code fields into a temporary global Journal
Line Dimension record variable. At the end of the code, call the
RunWithCheck function with two parameters: the current record and
the temporary Journal Line Dimension record variable.

Page 227

Microsoft Navision Development II − C/SIDE Solution Development

9. As you did in the Seminar Jnl.-Check Line codeunit, add a parameter
(passed by reference) to the RunWithCheck function. The parameter
is a record variable of the Journal Line Dimension table.

10. Enter code in the RunWithCheck function trigger so that after the
function performs the first copy of the Seminar Journal Line record,
the function resets and deletes all records in the original global
Journal Line Dimension variable. The function then copies the
records from the Journal Line Dimension parameter variable to the
global Journal Line Dimension variable. It does so by calling the
CopyJnlLineDimToJnlLineDim function of the
DimensionManagement codeunit.

11. In the Code function trigger, change the call of the RunCheck
function of the Seminar Jnl.-Check Line codeunit so that it calls the
function with the two parameters instead of only one.

12. In the Code function trigger, you want to ensure that the journal line
dimensions are moved to the new ledger entries' dimensions. The
DimensionManagement codeunit makes this easy with a function
called MoveJnlLineDimToLedgEntryDim. Enter code to call this
function after the Seminar Ledger Entry record is inserted.

Now add code to codeunit 123456700 Seminar-Post to move the document
dimensions to the posted document dimensions.

13. Create a new local function called CheckDimValuePosting that takes
four parameters: an integer variable called TableID and two record
variables that are passed by reference for the Seminar Registration
Header and Seminar Registration Line.

14. Enter code in the function trigger so that depending on the table ID
sent to the function as the TableID parameter, the function will load
an integer array variable (with ten dimensions) and a code array
variable (of length 20 with ten dimensions) with the table IDs and
field values of the key dimension fields for the table. (See the
functional design for a list of the key dimension fields for the
Seminar Registration Header and Seminar Registration Line tables.)
In each case, the function calls the CheckDocDimValuePosting
function of the DimensionManagement codeunit, and shows an error
if it returns FALSE.

15. Create a new local function called CheckDimComb that takes two
parameters: an integer called TableID and an integer called LineNo.

16. Enter code in the function trigger so that if the CheckDocDimComb
function of the DimensionManagement codeunit returns FALSE
when run with the document dimensions, the function will show one
of three errors: one error if the Line No. is 0 or one of the other two
errors depending on whether the TableID is for the Seminar
Registration Header or Seminar Registration Line.

Page 228

Chapter 8: Managing Dimensions

You now need a function that checks the document dimensions and passes them
to a temporary TempDocDim variable.

17. Create a new local function called
CopyAndCheckDocDimToTempDocDim.

18. Enter code in the function trigger so that the function copies the
appropriate records from the Document Dimension table to the
TempDocDim variable. The function runs the CheckDimComb
function for the Seminar Registration Header table ID and Line No.
0. The function then runs the CheckDimValuePosting function. If
there are associated Seminar Registration Line records, the function
runs the CheckDimComb and CheckDimValuePosting functions for
each of the records.

19. Enter code in the OnRun trigger so that after testing the Resource
No. field of the Instructor record, the program runs the
CopyAndCheckDocDimToTempDocDim function.

20. Enter code in the OnRun trigger so that after the Posted Seminar
Reg. Header is inserted, the program copies the document
dimensions to the posted document dimensions by calling the
MoveOneDocDimToPostedDocDim function from the
DimensionManagement codeunit for the Seminar Registration
Header dimensions in the DocDim variable. Do the same for the
Seminar Registration Line dimensions after the Posted Seminar Reg.
Line record is inserted.

In addition to posting the document dimensions to the Seminar Ledger Entry
records, you must also post the dimensions to the Job Ledger Entry records.

21. Enter code in the PostJobJnlLine function trigger so that the function
performs the following tasks:

– After copying the relevant fields to the Job Journal Line record
when the ChargeType is Participant, the function copies the
records for the corresponding Seminar Registration Line from
the TempDocDim to a TempJnlLineDim variable. It does so by
calling the CopyDocDimToJnlLineDim function from the
DimensionManagement codeunit.

– Further on in the function, instead of running the Job Jnl.-Post
Line codeunit, the function should run the RunWithCheck
function of the Job Jnl.-Post Line codeunit.

Page 229

Microsoft Navision Development II − C/SIDE Solution Development

You now need to add similar code to the PostSeminarJnlLine function.

22. As done previously in the PostJobJnlLine function, enter code in the
PostSeminarJnlLine function trigger so that depending on the
ChargeType, the function copies the document dimensions for a
corresponding record to a TempJnlLineDim variable, using the
following guidelines:

– For a ChargeType of Instructor or Room, the corresponding
record is the Seminar Registration Header.

– For a ChargeType of Participant, the corresponding record is the
Seminar Registration Line.

– In addition, instead of running the Seminar Jnl.-Post Line
codeunit, the function runs the RunWithCheck function of the
Seminar Jnl.-Post Line codeunit.

You are now finished modifying the codeunits. All that remains is to make the
dimensions visible in the Seminar Ledger Entries form.

23. Add the new Global Dimension Code fields to form 123456721
Seminar Ledger Entries as shown in the GUI design.

24. Add the new Entry menu button and Dimensions menu item as
follows:

Menu Button Options Comments
Entry Dimensions

(SHIFT+CTRL+D)
Opens the form 544 Ledger Entry
Dimensions for the selected entry. The
link should run whenever the form is
updated.

Page 230

Chapter 8: Managing Dimensions

Implementation of Use Case 4 − Managing Dimensions in
Invoicing

Managing Dimensions in Invoicing − Analysis
When we create invoices for seminars, we must carry the associated dimensions
to the invoices so that the invoice lines can be analyzed by dimension.

Purpose
The purpose of managing dimensions in the invoice posting process is to transfer
the dimensions for seminar registrations to the sales invoices.

Preconditions
The tables and forms for seminar registrations and posted seminar registrations
must exist and must be set up for dimensions. The invoice creation process must
exist.

Postconditions
The result of this use case is an invoice creation and posting process that transfers
dimensions from seminar registrations to the associated sales invoices.

Main Scenario
When the seminar managers create and post the sales invoices for seminar
registrations, the invoice creation process automatically transfers the dimensions
defined for those registrations to the sales invoices.

Page 231

Microsoft Navision Development II − C/SIDE Solution Development

Activity Diagram

Managing Dimensions in Invoicing − Design
You will modify the Create Seminar Invoices report to enable the transfer of
dimensions when creating invoices.

GUI Design
No changes to the user interface will be necessary for this use case.

Functional Design
For every Seminar Ledger Entry record that we use to create a sales invoice,
transfer the corresponding Ledger Entry Dimension records to new Document
Dimension records for the invoice.

Table Design
No changes to tables will be necessary for this use case.

Page 232

Chapter 8: Managing Dimensions

Managing Dimensions in Invoicing − Development

Exercise 27 − Modifying the Create Seminar Invoices Report
for Dimensions

1. In report 123456700 Create Seminar Invoices, create two new local
record variables: one for the Document Dimension table and one for
the Ledger Entry Dimension table.

2. Enter code in the appropriate trigger so that after the program gets
the Seminar Ledger Entry record and inserts the Sales Line, it deletes
all Document Dimension records that correspond to the Sales Line.
Then, for every Ledger Entry Dimension record that corresponds to
the Job Ledger Entry, the program should create a new Document
Dimension record for the Sales Line with the Dimension Code and
Dimension Value Code of the Ledger Entry Dimension record.

Testing Managing Dimensions
You will now test the flow of dimensions from the master tables through the
registration and posting processes right up to the creation of invoices. This test
script assumes that you have successfully completed the setup and testing of
those processes, and that some data exists.

1. Open the Seminar Card and view a seminar. Select Dimensions from
the Seminar menu button and enter at least one dimension for this
seminar.

2. Open the Seminar Room Card and view a room. Select Dimensions
from the Seminar menu button and enter at least one dimension for
this seminar room.

Page 233

Microsoft Navision Development II − C/SIDE Solution Development

3. Open the Instructors List and select an instructor. Select Dimensions
from the Instructor menu button and enter at least one dimension
for this instructor.

4. Open the Seminar Registration form and create a new registration
using the seminar, room and instructor that you define for
dimensions. Because we set the line dimensions invisible, you will
have to use the Show Column feature to see the dimension fields in
the subform.

5. View the header dimensions by selecting the Dimensions menu item
from the Registration menu button. Verify that they are what you
expected based on the values from the master records. View the line
dimensions by selecting a line and then selecting Dimensions from
the Line menu button. Verify that the values are what you expected.

6. Post the registration and open the Posted Seminar Registration form.
Verify that the dimensions are the same as those you specified before
posting.

7. Open the Seminar Ledger Entries form and view the entries for the
registration you just posted. Use the Show Column feature to see the
dimension columns and verify that they are what you specified.

Page 234

Chapter 8: Managing Dimensions

Test Your Knowledge
Review Questions

1. What is a dimension and what is its purpose in Microsoft Navision?

2. In what tables are the dimensions for the following entry types
stored:

– "Master" data entries (like Customer or Seminar)
– Transaction document header and lines (like Sales Line or

Seminar Registration Header)
– Journal lines
– Ledger entries
– Posted documents

3. Describe the flow of information and how dimensions are transferred
from the master data through transaction documents to ledger entries
and posted documents.

Conclusion
Summary
In this chapter, we modified our existing seminar module objects so that
dimensions can be defined and carried throughout the module.

Positioning − Where to go from Here
This training module has all the features of a standard Microsoft Navision
application. You can now add some interfaces for additional features.

Page 235

Microsoft Navision Development II − C/SIDE Solution Development

Quick Interaction: Lessons Learned

Take a moment to write down three Key Points you have learned from this
chapter:

1.

2.

3.

Page 236

Chapter 9: Managing Interfaces

CHAPTER 9: MANAGING INTERFACES
This chapter contains the following sections:

• Introduction
• Using an Automation Server
• Using OCX or Custom Controls
• XMLPort Triggers
• File Handling
• Test Your Skills

– Diagnosis
– Managing E-mail Confirmation
– Managing XML Participant List

• Test Your Knowledge
• Conclusion

Page 237

Microsoft Navision Development II − C/SIDE Solution Development

Introduction

Positioning − What is the starting point?
You have created a functioning seminar module with:

• Master tables and forms
• Registration functionality
• Posting routines
• Reporting
• Statistics
• Dimensions

You can now add some interfaces to the module to extend its functionality.

Preconditions
You need to have master tables and forms, tables and forms for seminar
registration, and the posting routines to post seminar registration information.

Further preconditions are knowledge of the following areas:

• Writing internal documentation
• Enabling multilanguage functionality
• Exporting and importing objects
• Working with event triggers
• Working with complex data types and their member functions
• Using virtual and temporary tables
• Creating journal and document posting routines
• Debugging code
• Programming for low-impact on the application
• Using report event triggers
• Using special report functions
• Creating processing-only reports
• Using FlowFields for calculations
• Working with dimensions

Page 238

Chapter 9: Managing Interfaces

Business Goals
In this story, our goal is to add features involving interfaces to the module.

Educational Goals
By completing this story, you will have learned or reacquainted yourself with the
following:

• Using Automation
• Using OCX
• Working with an XMLPort
• File handling

Using an Automation Server
In C/SIDE, you can implement COM (Component Object Model) technologies in
one of two ways: by using custom controls (OCXs) or by using Automation
(C/SIDE in the role of an automation controller or client) to perform tasks with
other applications. To create the e-mail confirmations, you will be using C/SIDE
as an automation server.

Using an automation server consists of five basic steps:

1. Declare the creatable (top-level) interface (class) of the automation
server as a variable of type Automation.

2. Declare all the other interfaces (classes) as variables of type
Automation.

3. Use the C/AL function CREATE on the variable declared in step 1.
Do not use CREATE on any other variables.

4. Use the methods and properties of the automation server in your
C/AL code. The syntax and semantics for these methods and
properties are documented in the documentation for each automation
server.

5. You can CLEAR (destroy) the top-level object if you want.
Otherwise, it will be destroyed automatically when the variable goes
out of scope.

Page 239

Microsoft Navision Development II − C/SIDE Solution Development

It is recommended that you create a separate codeunit for code that uses
automation because of performance issues and because an object using
automation can only be compiled on a machine on which the automation server is
installed.

The data being transferred must be in text format.

Using Custom (or OCX) Controls
You can use custom controls (which are also known as OLE controls or
ActiveX® controls) in Microsoft® Business Solutions−Navision®. However,
Microsoft Navision only supports non-visual controls.

To use a custom control, it must be physically installed on the target machine and
it must be registered with the operating system.

When you are ready to use a custom control, declare it as a global or local
variable with a data type of OCX. Then select the custom control you want to use
from a list by clicking the lookup button in the Subtype field. If the control you
want to use is not in the list, you can install and register a control yourself. You
can find information on how to do this in the Application Designer's Guide.

Once you have declared the control as a variable, you can access its methods and
properties as normal. To see the methods and properties available, use the C/AL
Symbol Menu. Methods can be run just as you would run any other function in
C/AL, and properties can be read and set just as any other object properties.

XMLPort Triggers
There are three events that fire for an XMLPort object.

• OnInitXMLPort: This trigger fires when the XMLport is loaded
and before any table views and filters are set.

• OnPreXMLPort: This trigger fires after the table views and filters
are set and before the XMLport is run.

• OnPostXMLPort: This trigger fires after all the data items in an
XMLPost have been processed.

There are also event triggers for every field in an XMLPort which are dependant
on whether the XMLPort is importing or exporting. For more information on
those triggers, consult the online C/SIDE Reference Guide.

Page 240

Chapter 9: Managing Interfaces

File Handling
Use file-handling to create the XML file. Through File Variables, you can import
data from or export data to any file accessible through your operating system.

The File Data Type
In order to gain access to an external file from within C/SIDE, you must first
declare a variable of type File. This is a complex data type, which has numerous
methods (functions) used to open, read, write and close external files.

Declare one File variable for each file you wish to access at the same time. You
would be able to use one File variable to handle multiple files, but you have to
access them one at a time, since each File variable can be open to only one file at
a time.

Opening Files for Import or Export
When you are ready to use a file, you must open it. Before you open it you must
set it up properly. To set it up properly, you should determine first whether you
are going to use it for reading (import) or for writing (export). Although you
could theoretically open a file for writing and then read it as well, this is normally
not done in Microsoft Navision.

Below are the File Methods used to prepare a file for opening and for actually
opening (and closing) it. As with other methods, these are called through the File
variable. For example, if the File variable is named "ImportFile", then to use the
Open method, you would enter:

ImportFile.OPEN(Name);

We will skip the "ImportFile." in front of each of these methods:

• WRITEMODE(NewWriteMode): Sets the Read/Write status of a
File variable before opening the file. If NewWriteMode is TRUE,
you are able to write to the file; if NewWriteMode is FALSE, then
you are only able to read from the file. Note that another way to use
this method is like this: IsWriteMode := WRITEMODE;. By using
this method after the file is open, you can tell whether a file is
available for writing or not.

• TEXTMODE(NewTextMode): Sets the type of data to be read or
written. If TRUE, the file is opened in Text mode and if FALSE, it is
opened in Binary mode. These will be explained a little later. This
method can only be used before opening the file. Note that another
way to use this method is like this: IsTextMode := TEXTMODE;.
With this method, used only after the file is open, you can tell
whether a file is being read or written in text mode or binary mode.

Page 241

Microsoft Navision Development II − C/SIDE Solution Development

• QUERYREPLACE(NewQueryReplace): Use this method if you
are going to open a file using the CREATE method. If
NewQueryReplace is TRUE, and the file already exists, C/SIDE asks
the user before a replace will be allowed. If NewQueryReplace is
FALSE and the file already exists, C/SIDE erases the old file and
replaces it with a new (empty) one, without asking the user. If the
file does not already exist, this method has no effect.

• OPEN(FileName): Use this method to open an already existing file.
Be sure to set the WRITEMODE and the TEXTMODE before
opening a file. FileName should be the full path name of the file. If
you use OPEN as a statement (without looking at the return value)
and the file indicated by FileName does not exist, a run-time error
occurs. If you use OPEN as an expression (looking at the return
value) and the file indicated by FileName does not exist, OPEN
returns FALSE, but if the file does exist, it is opened, and OPEN
returns TRUE.

• CREATE(FileName): Use this method to create and open a file. Be
sure to set the WRITEMODE, the TEXTMODE and
QUERYREPLACE before creating a file. FileName should be the
full path name of the file. If you use CREATE as a statement
(without looking at the return value), and the file indicated by
FileName cannot be created (say the path does not exist), a run-time
error occurs. If you use CREATE as an expression (looking at the
return value) and the file indicated by FileName cannot be created,
CREATE returns FALSE, but if the file is created, it is opened, and
CREATE returns TRUE. If the file already exists, it is cleared and
opened. Whether the user is warned about this or not depends on the
parameter to the QUERYREPLACE method called before calling
CREATE.

• CLOSE: Use this method to close access to the file through this file
variable. Once this is called, you cannot use this file variable again to
access a file unless it is re-opened or re-created. If CLOSE is called
and the file is not opened, a run-time error occurs.

Page 242

Chapter 9: Managing Interfaces

Methods of Reading Files
There are two methods provided for reading or writing data in external files. The
method is set using the TEXTMODE method described before. There are two
possible settings:

• TEXT (TEXTMODE=TRUE): Each file access will read or write a
line of text. The variable used can be of any type and it will be
converted to (if writing) or from (if reading) text during the
processing.

• BINARY (TEXTMODE=FALSE): Each file access will read or
write a single variable. The variable will be read or written in its
internal format. For example, a Text is written out as a null
terminated string whose length is the defined length of the Text
variable. Since Text Mode is limited to one variable per line, note
that you cannot have more than 250 characters per line in the file.
Binary mode does not have this limitation, since it does not have
lines. However, the internal format can really only be read if it was
written in the same manner from Microsoft Navision. The one
variable type that is very useful when using Binary mode is the Char
type. Using this, you can read or write one byte at a time. In the
SkeletonFileImport object, we use Binary Mode and the Char type to
import text files that can be of any length.

Reading or Writing Data in External Files
The following methods are used to read or write data in external files (once
the file variable is open):

• [Read :=] READ(variable): Read a variable from the file. The
optional return value indicates the number of bytes read. If you are
using Text mode, a line of text is read and the text is evaluated into
the variable passed in as a parameter. If you are using Binary mode,
the variable is read in its internal format, and thus the number of
bytes read depends on the size of the variable.

• WRITE(variable): Write a variable to the file. If you are using Text
mode, the variable is formatted to text and written out as a line of
text. If you are using Binary mode, the variable is written using its
internal format.

There are other File Handling methods that can also be used.

Page 243

Microsoft Navision Development II − C/SIDE Solution Development

Test Your Skills − Managing Interfaces − Diagnosis

Description
In the functional requirements, our client expressed the desire for two features
that involve interfaces:

You should be able to send an e-mail notification to the customer's participants in
several types of situations, such as registration confirmation.

You should be able to print a list of the participants registered for a seminar as an
XML file.

Note that you will need two interfaces: one that handles e-mail and one that
creates an XML file.

Use Cases
We can split the analysis and implementation phases of this story into the
following use cases:

• Managing E-mail Confirmation
• Managing XML Participant List

The following diagram illustrates how the use cases relate:

Page 244

Chapter 9: Managing Interfaces

Implementation of Use Case 1 − Managing E-mail
Confirmation

Managing E-mail Confirmation − Analysis
Our client describes the e-mail confirmation in this way:

We should be able to send an e-mail notification to the customer's participants in
several types of situations, such as registration confirmation.

You will create a feature that will produce and send an automatic confirmation e-
mail message to each of the registered participants for a seminar.

Purpose
The purpose of managing e-mail confirmation is to provide a confirmation
message for participants, using e-mail as the medium.

Preconditions
Tables and forms for seminar master data and registrations must exist.

Postconditions
The result of this use case is that an e-mail confirmation feature will be available
to the user.

Main Scenario
At a certain date before the beginning of a seminar, seminar managers send out e-
mail confirmations to all those participants who are registered for the seminar to
inform them that they are registered and to remind them of the starting date for
the seminar.

Activity Diagram

Page 245

Microsoft Navision Development II − C/SIDE Solution Development

Managing E-mail Confirmation − Design
GUI Design
We want the e-mail confirmation to be available from the seminar registration.

Seminar Registration (Form 123456710): Add a new Functions menu button
as shown below:

Seminar Registration List (Form 123456713): Add a new Functions menu
button as shown below:

Page 246

Chapter 9: Managing Interfaces

Functional Design
To send e-mails, use an Automation variable with a subtype of an automation
server class that can create and send e-mails. For you, this automation server is
the Navision Attain ApplicationHandler, and the class you will use is
MAPIHandler.

Create a codeunit that can create and send the e-mails. In this codeunit, use the
same principle used to post lines − that is, have one function (or codeunit, in the
case of posting) that handles one line, and a separate function that handles
multiple lines by calling the first function for each line.

Table Design
No tables will be created or modified for this use case.

Managing E-mail Confirmation − Development & Testing

Exercise 28 − Creating E-mail Confirmations
Begin by creating a codeunit to create the e-mail.

1. Create a codeunit called 123456705 SeminarMail.

2. In the C/AL Globals, declare record variables for the Seminar
Registration Header, Seminar Registration Line, Customer and
Contact tables. Declare an integer variable to hold the number of
errors. Finally, declare a variable, called MAPIHandler, of type
Automation. In the Subtype, select Navision Attain
ApplicationHandler as the Automation Server and MAPIHandler as
the class.

3. Define text constants for the different sections of your e-mail
confirmation, including the subject line, the greeting, the
confirmation sentence and the signature.

Page 247

Microsoft Navision Development II − C/SIDE Solution Development

Now create the NewConfirmationMessage function that does the work of
creating one e-mail message.

4. Define a function called NewConfirmationMessage that has a
parameter of a record variable for the Seminar Registration Line
table, which is passed by reference.

5. Enter code in the function trigger so that the function performs the
following tasks:

– Creates an instance of the MAPIHandler (using the CREATE
function).

– Creates the e-mail message by assigning the different elements
of the message to the properties of the MAPIHandler variable.
a. ToName is the E-Mail from the Contact record

 b. CCName is the E-Mail from the Customer record
 c. Subject is the subject line text

 Use the AddBodyText method of the MAPIHandler to create each
line of the e-mail message.

NOTE: To see all the properties and methods available for the MAPIHandler, open the
C/AL Symbol Menu by pressing F5 or clicking View, C/AL Symbol Menu.

– "Sends" the message using the Send method of the
MAPIHandler.

– Uses the ErrorStatus property of the MAPIHandler to check the
number of errors.

– If there are no errors, sets the Confirmation Date on the Seminar
Registration Line to today's date.

6. Define a function called SendAllConfirmations with a parameter of a

record variable for the Seminar Registration Header.

7. Enter code in the function trigger so that the function runs the
NewConfirmationMessage function for each Seminar Registration
Line associated with the Seminar Registration Header that was
passed to it.

Page 248

Chapter 9: Managing Interfaces

Now that you have code to create and send e-mail confirmations, you need to
make the code available to the user.

8. Add a new menu button and menu item to form 123456710 Seminar
Registration as follows:

Menu Button Options Comments
Functions Send E-mail

Confirmations
Runs code to Send E-mail
Confirmations.

9. Enter code in the appropriate trigger so that when the user selects the

Send E-mail Confirmations menu item, the program runs the
SendAllConfirmations function.

10. Add a new menu button and menu item to form 123456713 Seminar
Registration List as follows:

Menu Button Options Comments
Functions Send E-mail

Confirmations
Runs code to Send E-mail
Confirmations.

11. Enter code in the appropriate trigger so that when the user selects the

Send E-mail Confirmations menu item, the program runs the
SendAllConfirmations function.

Page 249

Microsoft Navision Development II − C/SIDE Solution Development

Implementation of Use Case 2 − Managing XML Participant
List

Managing XML Participant List − Analysis
Our client's functional requirements described the need for a participant list in
XML format:

You want to be able to export the participant list for a seminar as an XML file.
Therefore, you need to create a participant list report, similar to the report we
created in a previous story, which is exported in XML format to a file instead of
being printed.

Purpose
The purpose of managing the XML participant list is to create a participant list in
XML format.

Preconditions
The tables and forms for seminar registrations must exist.

Postconditions
The result of this use case is an XML file that lists participants in a seminar.

Main Scenario
The seminar managers create participant lists for one or more seminars in an
XML file.

Activity Diagram

Page 250

Chapter 9: Managing Interfaces

Managing XML Participant List − Design
GUI Design
Partner Menu (MenuSuite 80): Add the following menu item to the Seminar
menu:

Menu
Type

Menu Name Group Comments

 Item Create XML
List

Periodic
Activities

Runs report 123456705 XML
Sem. Reg.-Participant List.

Functional Design
The XMLPort has three basic sections:

• A title, Seminar Registration − Participant List.
• Heading information from the Seminar Registration Header

including the No., Seminar Code, Seminar Name, Starting Date,
Duration, Instructor Name and Room Name.

• Line information for each registered participant from the Seminar
Registration Line, including Customer No., Contact No. and Name.

The following table shows the basic sections you will create:

Section Sample Section
Title <Seminar_Registration_−_Participant_List>
Heading for Heading
information

<Seminar>

Heading information <No>REG0001</No>
Heading for Line
information

<Participant>

Line information <Customer_No>10000</Customer_No>

In the appendix, you can see how the XML file should look when it is exported.

Table Design
You will not modify or create tables for this use case.

Page 251

Microsoft Navision Development II − C/SIDE Solution Development

Managing XML Participant List − Development & Testing
Exercise 29 − Creating the XML Sem. Reg.-Participant List
Begin by creating the XMLport.

1. Create a new XMLport called 123456700 Sem. Reg.-XML
Participant List.

2. Define the data items for the XMLport, using the functional design
as a reference for which tables we will draw information from. Add
code to calculate the FlowFields so that the Instructor Name and
Participant Name appear in the XML file.

Now implement a way that the user can run this XMLport. To give the user the
ability to select filters, we are going to create a new report:

3. Create a new Processing Only report called 123456705 Sem. Reg.-
XML Participant List.

4. This report has one data item, the Seminar Registration Header table.
Set the name of this datatype to SEMREGHEADER.

5. Create global variables for TestOutStream (datatype Outstream) and
TestFile (datatype File).

6. In the OnPreReport trigger insert this code, substituting your
preferred file path:

TestFile.CREATE('C:\XML_Part_List.XML');
TestFile.CREATEOUTSTREAM(TestOutStream);
XMLPORT.EXPORT(123456700,TestOutStream,SEMREGHEADE
R);
TestFile.CLOSE;
MESSAGE('XML Completed');

You are now finished with the XMLPort, so all that remains is to add the menu
item to the Seminar main menu.

7. Add the new menu item to the Periodic Activities folder in the
Partner MenuSuite.

Page 252

Chapter 9: Managing Interfaces

Conclusion
Chapter Summary
In this chapter, you created interfaces by using an automation server to send e-
mail messages to participants and an XMLport to create an XML file of
participants in a seminar.

Positioning − The Next Step
Our seminar module is complete. Before finishing, we will examine some
deployment issues.

Page 253

Microsoft Navision Development II − C/SIDE Solution Development

Test Your Knowledge
Review Questions

1. In what two ways can you use COM objects in C/SIDE?

2. When you want to use a variable for an automation server, what data
type do you give the variable?

3. What C/AL function do you use to create an instance of an
automation server class?

4. Can you transfer picture files to an automation server?

5. Where should you ideally place code that uses automation?

6. What event triggers exist for XMLports?

Page 254

Chapter 9: Managing Interfaces

Quick Interaction: Lessons Learned

Take a moment to write down three Key Points you have learned from this
chapter:

1.

2.

3.

Page 255

Microsoft Navision Development II − C/SIDE Solution Development

Page 256

Chapter 10: Deployment

CHAPTER 10: DEPLOYMENT
This chapter contains the following sections:

• Introduction
• Deployment Tasks
• Ongoing Support
• Test Your Knowledge
• Conclusion

Page 257

Microsoft Navision Development II − C/SIDE Solution Development

Introduction
The deployment phase marks the end of the implementation phase. During
deployment, the final preparations are made and the solution is installed at the
client site.

There are a number of preconditions for this phase:

• The new solution must be completely developed and tested.
• Any errors must have been identified and resolved.
• The various analysis and design documents must be updated for any

changes.
• The infrastructure must be in place.
• The users must be trained and knowledgeable about the new module

they will be using after deployment.
• The user documentation must be prepared and ready for use.

Once these preconditions are in place, you are ready to implement our seminar
module at the CRONUS International Training Academy site.

Deployment Tasks
Although the most important, and most exciting, deployment task is "going live"
with the new module at the client site, there are a few tasks that must be
accomplished first.

Steering Committee Approval
Conduct a final walk-through of the new module with the Steering Committee to
obtain their final approval for delivery. Once you have this approval, you can
prepare the system for going live.

Configuration Checklist
Go through a checklist of all the configuration elements that must be in place
before the module can be used. In this case, you must be sure that the various
new number series have been created and that the seminar setup is properly
completed.

Data Conversion
During data conversion, you will perform the transfer of existing customer data
into the new seminar module. This includes master file data as well as ledger
entries and transaction documents.

Page 258

Chapter 10: Deployment

Importing Document and Ledger Data
There are generally three types of data that you import into Microsoft® Business
Solutions−Navision®: master or supplemental table data, transaction document
data and ledger data.

Importing the master data is fairly straightforward, and you will most likely not
need to write any code.

Importing transaction documents, however, is more complicated. Because of the
complex nature of the header and line data and because the sheer amount of data
per line can sometimes be beyond the limits of a dataport, it is not recommended
to import documents. Historical data stored in the ledger entries is usually
sufficient. However, if it is necessary to import open orders, you can use a
dataport to import two files, one for the headers and one for the lines, making
sure to validate the fields. If some orders are partially shipped, you should only
import the portion of the order that is still open.

If necessary, you can import historical, or posted, documents. The process for
doing this is a bit simpler because you do not need to validate the fields since
they are for viewing only, and because you can enter line numbers sequentially,
since the user cannot insert new posted document records.

NOTE: When importing ledger or balance data, the most important thing to remember
is to never import directly into a Ledger table! Instead, import the data into an
appropriate Journal table. You can either leave the entries in the Journal table to be
reviewed and posted later or, if you perform more testing up front to ensure that the
data is correct, post the Journal entries as you import them.

One other thing to note is that the validation of some fields changes the values of
other fields. For instance, when you validate the Account No. field, the
validation code fills in the Description field. If the Description had already been
imported, the imported value would be lost. To solve this problem, create a
global variable and put that variable's identifier into the SourceExpr property of
the Dataport field rather than the actual field name. Then, after you call the
validation of the Account No. field, you can transfer the Description from the
variable to the field.

You should always fill in the Source Code field with a unique value for each
import routine. By doing this, you can always see where certain data in the
journals and ledger entries came from.

When importing document or ledger data, write code to check that the data
follows Microsoft Navision business rules, to initialize the records and to fill in
any missing data.

Page 259

Microsoft Navision Development II − C/SIDE Solution Development

Dataport Event Triggers
The events for dataport triggers revolve around the processing of data items and
the import and export of records. The initial triggers that run before the data
items are processed are OnInitDataPort, OnPreDataPort and OnPreDataItem.
OnPreDataport can be used to validate any options entered by the user on the
request form. OnPreDataItem can be used to insert code that will be run once for
the entire Dataport.

To write code that fires when records are exported, use the
OnBeforeExportRecord and OnAfterExportRecord triggers.
Likewise, to work with importing records, use the import triggers. Use
OnBeforeImportRecord to initialize the record to be imported. Use
OnAfterImportRecord to validate the information being imported, fill in missing
data, and to either store the record or post it. To write code that fires after a data
item has been processed, use the OnPostDataItem trigger, and to write code to
fire after all data items have been processed, use the OnPostDataPort trigger.

Exercise 30 − Creating Contact Dataport
The client would like to import contacts into our new seminar module. You will
create a simple Dataport to perform this task.

1. Create a dataport called 123456700 Import Contact with the Contact
table as the DataItem.

2. In the Dataport fields, choose to import the fields:

No.
Name
Type
Address
Address 2
City
Country Code
Phone No.
Company No.

Page 260

Chapter 10: Deployment

3. Write code to update the Currency Code based on the Country
Code. The countries that you should set up are detailed in the table
below.

Country Code Currency Code
AT EUR
BE EUR
CA CAD
DK EUR
NL EUR
US USD

Go Live
At go live, the system becomes available to users for normal daily transactions.
After the system is up and running, you can hand the administration of the
module over to a client manager.

Project Evaluation
As you final deployment task, perform a project evaluation with the project team
to assess the key aspects of the project planning and implementation. Some of the
factors you evaluate will be the following:

• Cooperation with the client and within the project team.
• Utilization of the project team skills.
• Project planning.
• "Highlights" and "lowlights" of the different project phases.
• Client satisfaction.

Ongoing Support Phase
After deployment, the project enters the ongoing support phase. As a Microsoft
Navision developer, there are two primary activities that you perform during this
phase: implementing new customer requirements and updating for new releases.
Each new development project should follow the Microsoft Navision
Implementation methodology we have used in developing the seminar module.
Let's examine what is involved in the upgrade process.

Reasons to Upgrade
There are two important reasons to upgrade your customer's Microsoft Navision
installation.

Page 261

Microsoft Navision Development II − C/SIDE Solution Development

Your Customer has already paid for it: Many of your customers will have an
Upgrade Agreement in effect from the time of sale. Thus, many of your
customers have paid for and will expect an upgrade.

Your Customer will pay for it: Some Upgrades will be important enough that
your customer will want them even if they have not paid for them in advance
with an Upgrade Agreement. Also, even with the Upgrade Agreement, the
customer is only purchasing the product upgrades and not the installation of the
product upgrades. The installation fees could be worth while, if upgrades are
planned for and implemented properly.

Benefits to the Customer
• Gain access to new features: First, they may gain access to new

features. For example, in version 4.0 we have implemented
Intercompany Postings. If your customer does not upgrade to version
4.0, they will not be able to use this feature.

• Improvements to existing features: In version 4.0, there are
improvements to financial reporting, budgets, sales documents,
dimensions and human resources among others. If your customer
wants any of these improvements, they need to upgrade to version
4.0.

• Improved performance and removal of problems: Performance is
improved and problems (read "bugs") are removed with every single
upgrade.

• Allow upgrades to new operating systems and hardware: For
example when Microsoft Navision Financials version 2.60 was
released, it added support for Microsoft® Windows 2000, didn't
include support for SQL 2000.

• Better support when on the current version: Your customer will
tend to receive better support when they are on the current version.
As versions become obsolete, fewer and fewer people have expertise
in that version.

Benefits to the Solution Center
• Better customer relations: Customer Relations are built on

providing services to the customer. An Upgrade is an opportunity to
provide a service to an existing customer that is NOT in response to
a customer complaint. It also gives you a chance to talk with your
customer and find out what new needs they may have which you
could provide for them. Finally, it keeps you in their minds.

• Easier to support when the customer is using the current
version: In many cases, the solution to a problem your customer has
is found in a newer version. In other cases, you may find it hard to
support an old product when nobody at your organization can
remember it.

Page 262

Chapter 10: Deployment

• Remove problems before the customer notices them: When your
customer finds a problem that turns out to be caused by a bug, they
often want you to fix the problem for nothing, and even if you do
(you shouldn't, but…), they may be irritated with you and with the
product. If an upgrade fixes a bug that the customer has not run into
yet, they pay for it with the upgrade, and there is one less opportunity
for them to be disappointed.

• Opportunities for additional sales: Microsoft Navision often
includes new features that your customer may be interested in using.
However, in order to get this new feature, the customer must
upgrade, which generates service revenue for you.

Definitions
Before discussing the types of upgrades, we need to explain a few definitions.

• Executables: The Microsoft Navision programs that run under the
operating system and include the client, the server, the C/ODBC
drivers and so on. They can be identified by the fact that you see
them in the Windows or NT Explorer, and they are files that end
with ".exe" or ".dll", and so on.

• Application: The programs that run within the Executables, more
specifically within the client, which is known as C/SIDE. The
Application is made of Navision Objects.

• Functional Area: A major division within the Application, like
General Ledger or Inventory, that can be identified by the fact that
there is a Navigation Pane Menu item that identifies it and by the
sub-menu that appears when this button is pressed.

• Granule: A set of objects that is purchased separately which
contains a set of features.

• Feature: A small set of functions that are part the Application. The
General Ledger is a Functional Area within the Application, Account
Schedules is a Granule, and Date Comparison is a Feature of
Account Schedules.

• Bug: A piece of the program that does not work as intended. Note
that if a piece of the program is not working the way you would like
does not make it a bug. Only if it does not work as designed by
Microsoft Navision is something considered a bug.

• Enhancement: An "enhancement" is when an existing feature is
made to work better in some way, easier to use, faster, performing
additional functions, and so on. If a feature is merely made to work
as it was originally intended, then that is a bug fix, not an
enhancement.

Page 263

Microsoft Navision Development II − C/SIDE Solution Development

Types of Updates
There are different categories of Software Updates which you may be required to
install:

• Hotfix: A single cumulative package composed of one or more files
used to address a problem in a product. Hotfixes address a specific
customer situation and may not be distributed outside that customer
organization.

• Release: Normally scheduled product release that includes the
upgrade toolkit.

• Update: A broadly released fix for a specific problem addressing a
non-critical, non-security related bug. Can include critical updates
and feature packs.

• Critical Update: A broadly released fix for a specific problem that
addresses a critical, non-security related bug.

• Service Pack: A tested, cumulative set of all hotfixes, security
updates, critical updates, and updates, as well as additional fixes for
problems found internally since the release of the product. Service
packs may also contain a limited number of customer-requested
design changes or features.

• Feature Pack: New product functionality that is first distributed
outside the context of a product release, and is usually included in
the next full product release.

Planning for Upgrades
The most important step in the upgrade process is to plan for it in advance. When
you install Microsoft Navision on your customer's system, you know that you
will upgrade eventually, so you might as well plan for it.

Start this planning when you are making your initial implementation plans. Many
times, an upgrade may be made very difficult because of a decision made when
you first implement the customer's system. The largest area is in customizations.
Other areas are also important. For example, an upgrade of the executables
usually requires changes on every single client machine. Throughout the
implementation process, keep you customer informed of upgrade considerations.
For example, if they do not know that upgrades will bring their system down for
a while, they will be irritated when an upgrade is done. If they know in advance,
they can help plan by telling you when might be the best time to upgrade.

Page 264

Chapter 10: Deployment

There is no overstating the importance of keeping good records. You must
know what is on every customer installation, so you can:

• Make appropriate decisions about whether to install an improvement.
• Make correct plans about how long an upgrade will take.
• Know when to ask your customer about whether they want certain

new features.
• Know when an upgrade will override a customization that you have

done.

Customizations
The most important planning for upgrading is when you are doing
customizations. Consider how you will upgrade your customizations whenever
you modify your customer's software. The best way to do this is to use the
recommended methodology.

We recommend including considerations for Upgrading with every Design
Specification. In addition to helping you plan ahead, it also helps the customer to
make intelligent decisions. If they know that a particular design will mean
extensive upgrade problems every time, they may opt for an alternate design,
even if it costs more money at first.

Also, using the Low Impact programming techniques are part of the Attain
Development course. Only make changes to the base application when necessary,
and then make them in a way that is easy to upgrade. In addition, document every
change. This is not optional − it is essential. You cannot have a smooth upgrade
without knowing what is on the customer's system.

If your customer has development tools, you have additional problems. Teach
your customer to use the same documentation and modification techniques that
you have learned when programming. You need to be copied on all of their
documentation.

Scheduling
When it is time to perform the upgrade, the planning starts with scheduling. Once
you decide that an upgrade will be done, you must start planning a schedule with
your customer well in advance. There are several reasons for this.

The Microsoft Navision Server (or SQL Server) must be taken down every time
you do an upgrade, no matter how small. Even if there isn't an Executables
upgrade, there is an object cache on every client. In addition, a backup must be
performed before every upgrade, no matter how small. Treat every upgrade as
though you were implementing a new system, since in some ways, you are.

Because of the need to take down the server for a period of time, you may need
to install the upgrade during off-hours, or even over a weekend, if there is a data
conversion as part of the upgrade.

Page 265

Microsoft Navision Development II − C/SIDE Solution Development

There are several things you can do to relieve some of these time issues and
make the upgrade less painful for the customer, but they require planning and
scheduling. First of all, enlist the support of your customer's IT department for
anything that they can do for you. For example, the customer's IT department can
see that the server is taken down and that backups are performed before you get
there. Furthermore, they can also distribute Executables changes, and
communicate with the users about the upgrade. Second, do as much as possible at
your own site. For example upgrade all objects, write and test the data upgrade
routines, and finally test the installation. When you've done all this, you are ready
to bring everything to your customer's site for execution. However, make sure
you plan for contingencies − what if things fail.

Upgrading the Executables
If there is an upgrade to the executables (the Microsoft Navision programs that
run on the Operating System), this part of the upgrade is done first. It can be
scheduled separately from any other steps. For example, you could upgrade the
Executables portion of a Release one weekend, and not schedule the upgrades for
the Objects or Data for another two or three months.

Upgrading the Executables is very easy, normally just copying the new files over
the old ones. However, when you have 50 or even more Client machines to
upgrade, this can take a lot of time.

Sometimes, the internal database structure can change. When this happens, you
will be told, but all you need to do is make a Microsoft Navision Backup under
the old system, and then restore from the backup after you have installed the new
system.

The first step is to determine what is being upgraded. This can be an upgrade of
the Microsoft Navision Server, the Client, or both. It can also involve other
Executables, like N/ODBC. Sometimes, a new Customer License is required. If
so, be sure to order one before you proceed. Read the Upgrade Toolkit
documentation carefully to determine what exactly is upgraded. Note that there
are special instructions when upgrading the SQL Server Option.

Navision Server
If you need to upgrade the Microsoft Navision Server, follow these instructions.
First, if you need to do a Navision Backup. Make the backup while the old
system is still running. This must be a complete backup − all companies, data
common to all companies, and application objects. Then, you can have
everybody log off the system and bring down the Microsoft Navision Server.
Now, make a complete backup copy of all Navision files (executables and
database) using tape or another fixed disk drive. This backup will be used should
anything go wrong with the upgrade.

Page 266

Chapter 10: Deployment

Now, install the new Server components. This normally involves copying the
new files over the old ones. Sometimes it requires a new installation, but just
install the new version over the old version. Normally, there is a Client also
located on the server machine. If so, and if there is an upgrade to the Client
Executables, then do this now. If there is a new License involved in the upgrade,
copy it into both the server directory (the one which contains server.exe) and the
client directory (the one which contains fin.exe).

If a Navision Backup was required due to a database structure change, delete the
old database, bring up the Microsoft Navision Client on the Server Machine, and
create the new database (using the same name and location as before). Restore
the complete Navision Backup into this new database. Bring down the Server
Machine Client.

Now, bring up the Server, and bring up the Server Machine Client. Log onto the
Server from the Server Machine Client. Run a few simple tests to make sure that
the system has been properly restored and that you can still run basic
functionality.

If there are Executable upgrades for Clients, bring down the Server and upgrade
all of the clients. This will be covered in the next section. Once this is done, you
can bring the server back up, and you are back on line.

Navision Clients
If there are Executable Changes for a Client, the steps are quite simple. Bring
down the client (exit Microsoft Navision). Copy the new Client files into the
client directory, or re-install the client; whatever the upgrade kit instructions say.

If there are other Executable Upgrades, like N/ODBC, C/FRONT, and so on,
then install them now as well. The upgrade kit includes specific instructions.

If a new Customer License is required, copy it into the Client directory at this
time. Then bring the client up.

You need to repeat the above steps for each Client in the installation. If there are
many Clients, you may want to enlist the customer's help in doing this part of the
upgrade. The steps are very simple, but must be repeated on each system.

If the Server Executables are also being upgraded, you must first bring down all
Clients, upgrade the Server, upgrade all Clients, bring the Server back up, and
then bring all Clients back up.

Page 267

Microsoft Navision Development II − C/SIDE Solution Development

Upgrading the Objects
The Object Upgrade is the most difficult part of any upgrade, no matter what the
category of software update. What makes this difficult? Well, first Microsoft
Navision a/s in Denmark made worldwide changes to the application objects.
Next, the NTR makes changes to these same application objects. Then, you made
custom changes to these same application objects. In fact, if your customer has
the design tools, they may have made their own changes to these same
application objects. All without consulting each other!

Each NTR is responsible for merging Microsoft Navision a/s changes with their
changes (if applicable). This is why it takes time between the worldwide release
of a version and the local NTR release of that same version. It is your job to
merge these changes with the changes that you made during customization. There
are many things that help, a lot of them depend on you following the rules for
documenting customizations. We will review the Version Tags and Modification
Flag rules as we go through the upgrade steps. (For a review of versioning, please
consult the Development I manual). We will review the basic process that you
must go through for each individual application object. For this example, use
Table 18, the Customer Table, as a stand-in for any application object.

For each object, you have a possibility of up to three versions. First, the old Base
version, which you can get from the CD that you installed from. It is very
important that you document what version you installed from. Second, you have
the new Base version and also you have the old Customized version, which is
what is currently running on your customer's system. What we want when we are
finished, is a new Customized version of the object, which includes all of the
customizations, plus all of the changes made for this upgrade.

There are four possibilities here:

Possibility One
First, neither you nor we made any changes to this object. In this case, the object
on your customer's system does not change during this upgrade.

Possibility Two
Second, you customized the object, but we do not change it for this upgrade.
Again, in this case, the object on your customer's system remains unchanged for
this upgrade.

Possibility Three
The third possibility is that we change the object for the upgrade, so there is a
new base version, but you did not customize this object. In this case, the new
object replaces the object on your customer's system.

Page 268

Chapter 10: Deployment

Possibility Four

Finally, the possibility that causes the problems − you made customizations to
the object, and we also changed the object as part of the upgrade. In this case,
you must first determine which version changed the object the most, either your
changes, or our changes. Whichever one changed the object the most, you should
use that object. Then, you must change that object so that it includes all of the
changes that were made by the other.

For example, the upgrade you obtained from us contains more changes than you
made during customization. Therefore, get the object that you obtained from us,
re-do your customizations on that object, and then replace the object on your
customer's system with the new, customized object.

Another example, the customizations you made contain more changes than we
did for the upgrade. Therefore, get the object from the customer system, re-do all
of our changes on that object, and then replace the object on your customer's
system with the new customized object.

A Typical Upgrade
Let's run through the typical steps to upgrade objects. In this situation, you have
made a few small changes for your customer.

Assume that you have followed all of the recommendations for Version Tags,
that is, that in the customer's system all modified objects have been tagged with
an additional Version Tag (we will use CR01), and that all Modification flags are
turned off. In addition, your customer has no design tools; therefore, you are not
required to go to the customer site to pick up the objects, since the customer has
not changed them. You kept a copy of the customer's database in house. This
copy has just objects, either no data or minimal (Cronus) test data. You also have
a copy of the target version application

Step by Step
1. Make a working copy of the customer's database (objects only).

Simply do a Navision backup, create a new database, and then
restore Application Objects only.

2. Get the Improved Objects from the target version database. To do
this, go into the Object Designer and click the All button. Then put
your cursor in the Version Tag column, and set a filter to your
NTR's code for the new version. This filters out all but the improved
objects. Then select all objects (CTRL+A) and export. Export as a
Navision Object file, with an extension of .fob.

3. Go back into your Working Copy database and import the Navision
Object file into the Object Designer. Normally, there will be
conflicts, but even if there are not, bring up the Object Import
Worksheet anyway. Look over all of the objects, find the conflicts,
and write down the object type and ID on a Conflict List. Skip any
objects that have a conflict for this step. For the remaining objects,
there is no conflict; the new objects simply replace the old ones since
the old ones were not customized.

Page 269

Microsoft Navision Development II − C/SIDE Solution Development

4. Review the four possibilities again. First, an object might not have
changed in either the customized version or the new base version. In
this case, we would not have imported the object, since only the
changed objects were imported. These do not show up in the Import
Worksheet. Second, the object might only have changed in the
customized version, but not in the new base version. In this case, the
object is not imported, since only new base objects are imported.
Again, these do not show up in the Import Worksheet. Third, the
object might have changed only in the new base version, but not in
the customized version. These objects are in the Import Worksheet,
but they show up with no conflicts. They can just be imported.
Fourth, the object might have been changed in both the customized
version and the new base version. These objects are in the Import
Worksheet. In this case, they show up with a conflict. Skip these
objects (do not import them) and write them down to create a
Conflicts List.

5. Review the Conflicts list. You should look up each object in the
Conflicts List in the Change Log that came with the new version.
Remember to check all the improvements, since it might have been
modified more than once. If you look at the Change Log in the Latest
Improvements page, where they are all together in one log, and you
start at the bottom with the version you see in the Import Worksheet,
you can find all of the changes more easily.

6. For each object in the Conflicts List, ask yourself if the upgrade
modification is small? More to the point, is it smaller than (or even
almost as small as) the change you made for your customization?

 If the answer to this question is Yes, then use the Change Log that
came with the new version to implement the improvement on the
customized object in the Working Copy database.

 If the answer to this question is No, then import the new base object
into the Working Copy database, and then use your Change Log to
implement the customization on the New Base object.

 Do you not have a change log? Then use the Compare tool to create
one. This makes it easier for you to decide which change is smaller.

 Either way, set the version tag to reflect both new versions. This
shows both the new NTR Version Tag and the Customization
Version Tag.

 There is one exception to these rules. If this is a table object, we may
have added a new field in a number range that you cannot add. In
this situation, if at all possible, import the object and then implement
your customization on the new object using your change log. If this
is not practical, the only alternative is to set the action to "Merge
Existing<-New" and import the new base object. This brings in the
new field(s). Then, apply the remainder of the Change Log.

Page 270

Chapter 10: Deployment

7. Complete step 6 for every object on the Conflicts List. The hard part
is over.

8. As an optional step, you can change the Version that is displayed on
the Help About screen. Note that this step is optional only for an
improvement. If this is a Service Pack or a Minor or Major release,
you must perform this step.

 In the Object Designer, open Codeunit 1 and look for the function
called ApplicationVersion. An example is shown here. Simply
change the displayed version to the new version you wish to display,
reflecting the latest base version tag in all the object. Just change the
text between the single quote marks to this text. After you update
Codeunit 1 and save it, don't forget to update the version tag of this
object as well, to the same version as you put in those quotes.

9. The next step is to compile all objects. You do this to make sure
there are no conflicts with existing objects that show up. In the
Object Designer, click the All button, select all objects, and press
F11 to compile them. When it is done, any objects that did not
compile will be marked, so you can View, Marked Only, in order to
check them out and fix any problems.

10. Now, you must create the Upgraded Objects file. In the Object
Designer, click the All button, and then filter the Version Tag
column. Once this is done, clear all the Modification Flags.

11. Select all the filtered objects (use CTRL+A) and export them as a
Navision Object File, a file that has the extension .fob. This is the
Upgraded Objects file.

12. Now you can install the Upgraded Objects on your customer site.
First, bring this file to your customer site. Schedule a non-busy time
to do this. When you load objects, especially table objects,
sometimes tables are automatically converted or re-keyed, which
takes a long time when there is a lot of data.

 At the Customer Site, bring down the server. Make a backup copy of
the database (enlist the support of the customer's IT department for
this step). Start the client up which is located on the Server Machine,
and open the customer's database in Local mode. Now go into the
Object Designer and Import the Upgraded Objects .fob file.

 Remember, even if there are now conflicts, you have already
resolved all of them. Therefore, when you bring up the Import
Worksheet, all you need to do is click the Replace All button, and
then do the import.

 Once this is completed (it might be 30 seconds, it might be 3 hours
or more), compile all objects, then bring down the local client. Bring
the Server back up, and your customer can continue working on their
newly upgraded system.

Page 271

Microsoft Navision Development II − C/SIDE Solution Development

Tools for Upgrading the Objects
Microsoft Navision gives you several tools you can use to help you upgrade.
Each one may be best for different circumstances.

Import Worksheet
You have seen how the Import Worksheet can be a useful tool. It is the best tool
to use to rapidly determine object conflicts. It can also be used to add new
Objects and Fields in the base number ranges that you may not have permissions
for. Finally, as you can see, it is the best tool to use to install the upgraded objects
on the customer's system.

Editing Text Objects
C/SIDE allows you to import Text Objects as well as Microsoft Navision
Objects. This is the best if you have manually applied an automatic change log to
some objects. It is also used when importing the Merge Tool results.

Compare Tool
The Compare Tool is the best tool to use when you are generating, and printing
an Automatic Change Log. It can also export an automatic change log, which is
in a good format to use for manual updates. Remember that if you use an
automatic change log, it is best to make the change in a text object file and
import it as text. Also, the Compare tool helps you find the relative size of each
modification by reporting what percent of each object changed.

Merge Tool
The Merge Tool is the best tool for automatically merging changes. The Merge
Tool is used only to merge the objects that have conflicts, in other words, only
load the objects (from both the Customized and the New Base versions) into the
Merge Tool that you need to compare and merge. The Merge Tool is also very
useful to track and store the various versions that exist for your various
customers. For it to do this properly, you need to disregard previous instructions
and load all changed objects from both the Customized and New Base versions.

Using the Change Log
Many times when an improvement is made, a manually generated change log is
published. This is the best tool for documenting modifications that will be
implemented many times. However, if you are only implementing the
modification once or twice, it is too much work to create. Remember that if you
use a manual change log, it is best to make the changes directly in C/SIDE.

What if?
In this section, you explore the answers to many "What if" questions. These
questions usually pop up during the upgrade process, especially for difficult
upgrades.

Page 272

Chapter 10: Deployment

A Major Release
Now, we discuss some "What If," situations that may occur in your particular
upgrade which require some additional information. First, what if this is a major
release with extensive customization. Since there are more objects, there will be
more chance of conflicts. Since the changes are more extensive, there is more of
a chance that you will have to re-implement your customization, rather than use a
change log to re-implement the upgrade.

One suggestion − in your planning, include some time to test the upgraded
system, sometime after recompiling all objects but before you set the version
tags, reset the modified flags, and export. Make sure that there are no obvious
problems. Use the Customer License to do the test, in case there is a problem
with it. Once you do the export, test the object upgrade on a copy of the complete
customer database (including data).

One other possibility is that there could be a major functionality change. This
usually means a change in the way something is done. In this case, the change is
so major that you cannot merge the changes, either with the merge tool or even
manually. This is because there is a whole new way of doing something, not just
a change in the details. If this is the case, you must re-implement your
customization from scratch in any object in which there is a conflict. In some
cases, your customization may need to be changed even in unchanged objects,
should it depend on the old way of doing things.

It is also important to re-evaluate the relevance of your customization when
moving to a new version. Perhaps Microsoft Navision has added a feature that
could replace all or some of your customization. Or perhaps the customer's
business processes have changed. Before you upgrade, you should review the
customization's functionality and discuss with your customer which parts will be
upgraded.

Field Name Changes
What if you made some major field name changes? The problem here is that
these changes will ripple down into every other object that refers to the changed
field, at least in any automatic change log you generate. This can create huge
change logs where in fact there is no actual change to many objects. For example,
suppose you changed Department to Division. Consider the effect on the
Customer Table. When you change the field name there, note that it has now
changed automatically on the card form, on the list form, on the Customer List
report, and so on, all without you having to do anything. However, if you now
generate an automatic change log, it shows that the card form changed, the list
form changed, the reports changed, and so on. This makes it harder for you to do
upgrades.

Page 273

Microsoft Navision Development II − C/SIDE Solution Development

The solution is to make the field name changes first. Before you extract the New
Base objects from the new database, make your customized field name changes
to the tables only. Any object that you update, be sure the Modified Flag is
checked, even if you just change the table name. When you extract the new
objects, you must get all objects whose Version Tag OR Modified Flag has been
changed. Use the Marking Facility to do this. First, filter all objects whose
Modified Flag is on, select all of them, and press CTRL+F1. Then, remove that
filter, filter on all objects with the new Version Tag, select all of them, and press
CTRL+F1. Now, remove that filter, use View, Marked Only, and then select all
filtered objects.

Customer has Design Tools
What if my customer has Design Tools? The problem here is that your customer
probably does not follow the Microsoft Navision development rules. These
include rules about setting the Version Tags and Modification Flags, Internal
object documentation, developing on line and not using a Project Log, so you
cannot tell why they made a change.

The solution has two parts; first, better planning is necessary. You can try to
teach your customer the rules, explain how it makes upgrading easier. Or, you
can just get them to follow one rule − leave the Modification Flags alone. This
rule is easy to follow, since it does not require them to do anything.

When you do an object upgrade, you must schedule a time to pick up the
customer database from the customer site before you can upgrade. This is
because your copy is not up to date. Just use a Navision Backup. Make sure when
you pick up the backup from your client, you inform them that they should not
make any changes until you install the upgrade. Furthermore, reiterate that any
changes that they make will not be included in the upgrade. You might also want
to identify a customer contact who helped with the development and who can
answer any questions about the changes made.

The second part of the solution is that certain steps in the Upgrade Process will
be changed. In step 1, when you make the Working Copy of the customer
database, be sure to create a new database and restore the Application Objects
ONLY from the Navision Backup you obtained from the customer site. After
this, go through and give your customer's changed objects (the ones with the
Modification flag on) their own additional Version Tag, something different from
your version tag. Use new letters, based on the customer name. For example, if
Acme Tools is your customer, make their Version tag AT01 (assuming this is
your first upgrade), and then add an "AT01" at the end of every modified object
with an existing version tag. If the customer created a new object, set the Version
tag to "AT01" alone. When you reach step 6, (updating each object on the
Conflicts list), take into account customer changes. At the least, you will need to
generate a new change log from the Working Copy. When you have finished
compiling all objects, before you export, you might want to schedule some time
for your customer contact to come in and check out the upgraded system. It will
be easier to see if a customer change was lost this way.

Page 274

Chapter 10: Deployment

Finally, when you do export the objects, be sure to get all objects with either the
New Base Version Tag, or the Customer's new Version Tag that you created.
You can use the marking technique to do this. The rest of the steps are the same.

We are not Following Microsoft Navision's Methodology
What if you, the Solution Center, are not following the rules? For example, what
if you went to the customer site and made some changes on the fly? The answer
− see the previous section on what if the customer has the design tools.

In addition, you should start following the rules from now on. Upgrades are
difficult enough when you follow the rules.

More Than One Upgrade to Do
Here is a common situation. The customer has not upgraded for a while, and you
have skipped a Release and two Service Packs. Now, with the latest Release, the
customer sees a feature he just has to have, and he realizes that now he wants to
be upgraded. The problem, there is no direct upgrade path except from one
version to the next version. You have to do multiple upgrades at once. Object
Upgrades can be combined at your site. Simply do the upgrade steps 2 through
10 for each upgrade version in between. When you have upgraded to the final
version, remember to export all objects with any Version Tag higher than what
the customer had, so they get all changed objects.

However, Data Upgrades are usually too complex to combine. Therefore, you
should schedule a separate upgrade for each Data Upgrade you need. This
usually corresponds to a Release. Thus, when you combine Object Upgrades, you
must still export the modified objects for each Data Upgrade. Note that
technically, you could do all the Data Upgrades at once, even if they are not
combined. It is highly recommended that you test thoroughly between Data
Upgrades during testing if you plan to combine Data Upgrades at the customer
site.

Upgrading the Data
Now, we are finally ready to upgrade the data. You usually need to do this every
time there is a Release.

We include Data Conversion routines (usually codeunits) in a Upgrade Toolkit
which is generally released about one month after we release the product. You
should take advantage of this time lag to familiarize yourself with the new
product and any oddities about it. When you get the Data Conversion routines,
try not to modify them. It would be best if any data conversion routines you need
could be written separately, and then run in series after ours. However,
occasionally, you need to modify our Data Conversion routines because
otherwise they will not work with your customizations. This is OK, but be
careful. You must write (or modify) Data Conversion routines at the same time as
you are creating the Upgraded Objects on your site. However, these routines
must be run on the customer site, in order to upgrade their live data.

Page 275

Microsoft Navision Development II − C/SIDE Solution Development

Preparation
There are some additional steps you must do to prepare for a data upgrade. First,
when you make your Working Copy, make an additional copy to use to create the
Phase One Conversion objects. Phase One objects must be created using the old,
un-upgraded database. When you finish Upgrading the Objects, make another
copy of the database, this one to be used to create the Phase Two Conversion
Objects. Phase Two objects must be created on a new, upgraded database.

One other step you should do, is to create a complete copy of the customer's
database. This is so you can test the upgrade process. This means you must get
the customer database from the customer site so that you can have complete,
current data.

The Conversion Process
The conversion process is highly dependent on the particular configuration of the
system and the old and target versions involved. The Upgrade Toolkit guides you
through the steps involved for each possibility.

Please note that all of these steps outlined in the Upgrade Toolkit can take a
significant amount of time, especially if your customer has substantial data. You
will be able to gauge the amount of time when you do your test run at your site.
Be sure that the customer can be down long enough for the entire database and
object upgrade. This work will probably be done only on weekends or holidays.

Conclusion
We have successfully deployed our seminar module and are prepared for the
ongoing maintenance phase. Our client has identified some additional
requirements which can be found in the Additional Exercises section of this
manual, but our initial project is now complete.

Page 276

Chapter 10: Deployment

Quick Interaction: Lessons Learned

Take a moment to write down three Key Points you have learned from this
chapter:

1.

2.

3.

Page 277

Microsoft Navision Development II − C/SIDE Solution Development

Page 278

Chapter 11: Course Summary

CHAPTER 11: COURSE SUMMARY
This chapter contains the following section:

• Course Summary

Course Summary
We have covered a wide range of technical and theoretical topics in this course
through creating the seminar module for our client. The following is a brief
summary of the topics we have covered.

Introduction
In the Introduction, we discussed the "rules," "style," and "methodology" with
which you should develop solutions in Microsoft® Business
Solutions−Navision®.

Business Case Diagnosis & Analysis
In this section, we discussed the business case and analyzed our client's
requirements.

Managing Master Files
In Managing Master Files, we discussed the different types of triggers and how to
use event triggers. We also discussed the specific triggers available for tables,
forms, dataports and codeunits. In order to add more functionality to the tables
and forms we were creating, we discussed complex data types, specifically the
record data type, and its member functions that allow us to retrieve individual
records and sets of records. Finally we looked at enabling objects for
Multilanguage functionality and table relations considerations specific to
Microsoft® SQL Server®.

Page 279

Microsoft Navision Development II − C/SIDE Solution Development

Managing Registrations
In Managing Registrations, we discussed how to export objects as text files,
modify the text files if necessary and import the files back into Microsoft
Navision. We discussed how to write text messages to the user, such as error
messages and confirmation questions, so that they are enabled for multilanguage
functionality.

We looked at the Microsoft Navision Sales Invoice as an example of how to
implement a form with a subform. We defined what a matrix form is and how it
is typically used in Microsoft Navision. We then went through some of the basic
steps to create a matrix form. We discussed the different types of tables in
Microsoft Navision, including virtual, system and temporary tables, and how to
use them.

We also discussed additional form and control functions as well as reviewing
some useful functions from the Development 1 course.

Managing Posting
In Managing Posting, we began by defining Journal and Ledger Entry tables and
the roles that they play in the posting process. We discussed how and in what
situations you would lock tables in Microsoft Navision.

We described briefly how posting routines are written in Microsoft Navision. We
then looked at the different codeunits that make up a posting routine by
discussing the elements that are generally included in the Check Line, Post Line
and Post Batch codeunits.

We discussed how and where to add documentation when you make changes to
existing objects. We then described how transaction documents such as sales
orders are posted in Microsoft Navision. We also described some of the
performance issues to keep in mind while programming and how to program to
keep the impact on a server and network traffic to a minimum.

After creating a posting routine for our seminar registrations, we described the
Debugger and Code Coverage tools that are included with Microsoft Navision
and looked at how to use them.

Managing Integration
In Managing Integration, we integrated our module elements with the standard
application by adding a Seminar menu to the Navigation Pane and integrating the
Navigate feature. We also discussed some guidelines for changing tables that
contain data.

Page 280

Chapter 11: Course Summary

Managing Reporting
In Managing Reporting, before beginning development on our seminar module
reports, we discussed the various report triggers and the order in which they
"fire." We briefly described some of the more commonly used functions in
reports. Finally, we described processing-only reports and how they are used.

Managing Statistics
In Managing Statistics, we created a seminar statistics form that summarized the
total price for seminars that had been posted. Before creating this feature, we
discussed the role of FlowFilters in calculation formulas.

Managing Dimensions
In Managing Dimensions, we implemented dimensions functionality in our
seminar module. We then briefly discussed the Navision Developer's Toolkit.

Managing Interfaces
In our final story, Managing Interfaces, we added functionality to create e-mail
messages to be sent to participants and to generate a participant list as an XML
file. In doing so, we discussed how to use C/SIDE as an automation server, using
custom controls and XMLPorts.

Deployment
Having completed development and testing of the seminar module, we looked at
the tasks we will perform in the Deployment phase. We also discussed upgrades
as part of the Ongoing Support Phase.

Page 281

Microsoft Navision Development II − C/SIDE Solution Development

Page 282

Chapter 12: Review Questions

CHAPTER 12: REVIEW QUESTIONS
This chapter contains the following section:

• Review Questions

Review Questions
The following questions review the topics covered in this course and will help to
prepare you for the certification test in Microsoft® Business Solutions−Navision®
solution development. When you have finished answering all of the questions,
you can check your answers in Appendix C, Answers to Review Questions.

1. When running a report, the code in two of the following data item
triggers will be executed, even if there are no records in the data
item: OnPreDataItem, OnAfterGetRecord, OnPostDataItem. Which
two?

2. Our client, CRONUS, has decided that they would like to use the

same general product posting group for every seminar. Therefore, on
the Seminar Card form, the Gen. Product Posting Group should
always default to the same value for every seminar. Would you add
this code to the OnInsert trigger of the Seminar table or to the
OnInsertRecord trigger of the Seminar Card form?

3. You are writing a function in which you are passed a seminar

number parameter called SemNum. In the function, you have a piece
of code that you want to run only if a Seminar record exists where
the No. is the same as SemNum. What code would you write to test
whether or not the record exists?

4. You are writing code in which you want to open the Instructors form

to allow the user to select one or more instructors, so that the code
can make changes to those records. What function of the Form
variable would you use to run the form so that a user can make a
selection to be used by the code?

5. You are writing code for the Seminar Registration Header table in

which, if the Minimum Participants value is greater than the
Maximum Participants value, you will show an error. How would
you write this error message so that when users read it, they know
how to fix the error?

Page 283

Microsoft Navision Development II − C/SIDE Solution Development

6. You are writing code in a function in the Seminar table with the
variable NewRoomCode. You want to assign the NewRoomCode to
the Room Code field and run the code in the OnValidate trigger for
this field. What function can you use to accomplish both of these
tasks in one line?

7. What type of information does a virtual table in C/SIDE typically

contain?

8. Which C/AL function is used to calculate a FlowField?

9. If the Amount field on the Seminar Registration Line table was a

SumIndexField for the table, which C/AL function would be used to
calculate the sum of the Amount values on the table?

10. You are writing code in which you want to select all the Seminar

Registration Header records where the Starting Date is between two
variables called FirstDate and SecondDate. How would you define
this record set using the SETRANGE function? How would you
define this record set using the SETFILTER function?

11. You are writing code in which you must retrieve a record from the

Seminar Registration Header table using values from the table's
secondary key. Which C/AL function will you use to retrieve the
record?

12. Which C/AL function unlocks a table after the LOCKTABLE

function has been called?

13. If you have modified the code in an existing, standard codeunit, in

which places in the codeunit will you document your changes, and
what information will you include in this documentation?

14. Of the three main posting codeunits, Check Line, Post Line and Post

Batch, which codeunit writes to the Ledger Entry table? Which
codeunit reads the journal lines and calls the other two codeunits?

15. Why should you exercise caution when importing objects such as

text files?

Page 284

Chapter 12: Review Questions

16. In the OnValidate trigger of the Room Code field on the Seminar
table, you are writing code that you want run only if the value
entered by the user is different from what it was before. What code
would you write to compare the two values?

17. You are adding a menu item to a menu button on the Seminar

Registration form to run the Seminar Charges for the seminar
registration. Which properties will you set to ensure that if the user
changes to a new Seminar Registration record, the Seminar Charges
form will update to show the charges for the new Seminar
Registration record?

18. What is the purpose of the Check Line function in a posting routine?

19. What does the RECORDLEVELLOCKING property tell you?

20. When defining the data items that will make up a report, what are

two of the important factors in ensuring that the performance of the
report is as efficient as possible?

21. What is the standard shortcut key to start a posting routine for a

document?

22. You are writing a function that is passed a record variable (by

reference) called SemRoom. In the function, you want to write code
that checks the filters that the user placed on the record. Is this
possible?

23. Which trigger executes when the user clicks the lookup button for a

field?

24. In a function, you write the following line of code:

SemRegHeader.TRANSFERFIELDS(PostedSemRegHeader);

What does this code do?

25. In the Seminar Registration form, if the Starting Date is less than
three days away from the work date, you want the Starting Date to
appear in bold. What code would you write to make this happen and
in what trigger would it appear?

Page 285

Microsoft Navision Development II − C/SIDE Solution Development

26. You are performing data conversions into the new module. You are
responsible for performing the conversion of closed seminar
registration data into the Seminar Ledger Entry table. What method
would you use to perform this conversion, assuming that the data has
been thoroughly tested?

27. What are the three types of dimensions?

28. What property do you set to specify the values shown in a form's title

bar?

29. What properties should you always set for menu buttons on a form?

30. For Multilanguage functionality what functions can you use with text

constants to show the user the table or field where an error occurred?

31. What field property do you set to create a FlowFilter in a table?

32. What code would you write to set the value of "Minimum

Participants" to five for all records in the Seminar table?

 The client has requested that you write a new report for the seminar

module. The report should list all the seminars that are going to take
place between dates specified by the user on the request form. The
user should also be able to specify that the list of participants in each
seminar should show on the report by clicking a check box on the
request form. Based on this information from the client, answer the
following questions:

33. Assume that your data items are Seminar Registration Header

(SemRegHeader) and Seminar Registration Line (SemRegLine),
with the Seminar Registration Line data item being indented. If you
call CurrReport.SKIP from the OnAfterGetRecord trigger of the
SemRegLine data item, which record will the program process next?
And if you call CurrReport.BREAK instead, which record will be
processed?

34. Which report function would you call to stop the entire report?

Page 286

Chapter 12: Review Questions

35. You have added two text boxes to the request form for the user to
enter the starting date and ending date for the report. In which trigger
can you write code to validate the dates entered and that the ending
date is after the starting date?

36. To allow the user to choose whether or not to print the list of

participants in the report, you have added a check box to the request
form, with its source being a variable called ShowList. You will add
code to the PreSection trigger for the body section showing the
registration lines. What code will you write to control whether the
section prints or not?

Page 287

Microsoft Navision Development II − C/SIDE Solution Development

Page 288

Chapter 13: Additional Exercises

CHAPTER 13: ADDITIONAL EXERCISES
This chapter contains the following sections:

• Introduction
• Adding Seminar Translations
• Adding Multiple Dimensions
• Managing Seminar Planning
• Conclusion

Page 289

Microsoft Navision Development II − C/SIDE Solution Development

Introduction

Positioning − What is the starting point?
You have finished phase one of the seminar module and now are ready to add
some additional functionality.

Preconditions
All aspects of phase one have been completed and there is data in the master
files.

Business Goals
By the end of this chapter, you will have created the tables and forms necessary
for translating seminars, using multiple dimensions with the seminar module and
managing seminar planning.

Educational Goals
By completing this chapter, you should have learned or reacquainted yourself
with the following:

• Implementing standard Microsoft® Business Solutions−Navision®
multi-language functionality.

• Implementing standard Microsoft Navision dimension functionality.
• Creating matrix forms.

Page 290

Chapter 13: Additional Exercises

Adding Seminar Translations
The client needs the ability to enter translations of the seminar name for
Multilanguage functionality. This is a change to Use Case 4 − Managing
Seminars from Managing Master Files. This is accomplished by creating a
Seminar Translations form and table that is very similar to those implemented for
some Microsoft Navision master files. To see an example in Microsoft Navision,
view Form 30 Item Card, Form 35 Item Translations and Table 30 Item
Translation.

GUI Design
Seminar Translations (Form 123456709): This form enables the entry of
translations of the seminar name.

There is no navigation from this form.

Seminar Card (Form 123456700): Add a new menu item to the Seminar Menu
Button just above the Extended Texts menu item (after the separator).

Menu
Button

Options Comment

Seminar Translations Opens the form 123456709 Seminar
Translations for the selected entry.

Seminar List (Form 123456701): Add the same Translations menu item as the
Seminar Card above.

Page 291

Microsoft Navision Development II − C/SIDE Solution Development

Functional Design
No additional functions have been defined.

Table Design
You need to create one table for the Seminar Translations change request.

Table 123456706 Seminar Translations contains the following fields:

No. Field Name Type Length Comment
1 Seminar No. Code 20 Must not be blank. Relation

to Seminar table.
2 Language Code Code 10 Must not be blank. Relation

to Language table.
3 Description Text 30
4 Description 2 Text 30

Exercise A1 − Adding Seminar Translations
You must carry out the following tasks to add the seminar translations to the
seminar master files.

1. Create table 123456706 Seminar Translation according to the table
design with a primary key of Seminar No., Language Code.

– Set the property to specify form 123456709 as the lookup form
for this table.

2. In the Seminar table, enter code in the appropriate table triggers to

perform the following tasks:

– When a record is deleted, the program also deletes the
corresponding records from the Seminar Translation table.

3. Create form 123456709 Seminar Translations. The only fields

necessary on this form are Language Code, Description and
Description 2.

– Set the property so that the Description 2 field is not visible.
– Set the property to specify that this form is the lookup form for

the Seminar Translation table.

4. Add the Translations menu item to form 123456700 Seminar Card as
shown in the GUI design.

5. Add the Translations menu item to form 123456701 Seminar List as
shown in the GUI design.

Page 292

Chapter 13: Additional Exercises

Adding Multiple Dimensions
You added dimensions functionality to the seminar modules but the client would
like to increase the usability of this feature by defining multiple dimensions. This
is a change to Use Case 1 − Managing Dimensions in Master Files from
Managing Dimensions.

To see a sample of how this works in Microsoft Navision, open the Customer
Card and select Dimensions from the Customer menu button to open the Default
Dimensions form. This is the same kind of dimensions functionality that you
have already implemented in the seminar module. Now open the Customer List
and select more than one customer. Under the Customer menu item there is a
submenu under Dimensions with two choices, Dimensions-Single and
Dimensions-Multiple. Select Dimensions-Multiple to open the Default
Dimensions-Multiple form. From here the user can specify default dimensions
for multiple customers at a time. You want to add the multiple dimensions
functionality to the Seminar List, the Seminar Room List and the Instructors
forms.

GUI Design
Add menu items for dimensions to the forms from which master data is defined.

Seminar List (Form 123456701): Add a Dimensions menu item just after the
Comments menu item on the Seminar menu button (just as on form 123456700
Seminar Card).

Menu Button Options Comments
Seminar Dimensions Opens submenu with the following

options:
Dimensions-Single (SHIFT+CTRL+D):
Opens the form 540 Default
Dimensions for the selected entry.
The link should run whenever the
form is updated.
Dimensions-Multiple: Runs code in
the OnPush trigger to open form 542
Default Dimensions-Multiple.

Seminar Room List (Form 123456704): Add a Dimensions menu item that
opens a submenu with the Dimensions-Single and Dimensions-Multiple options
as shown previously for the Seminar List form.

Instructors (Form 123456705): Modify the existing Dimensions menu item on
the Instructors menu button. The menu item will be changed to open a submenu
with the Dimensions − Single and Dimensions − Multiple options as shown
previously for the Seminar List form.

Page 293

Microsoft Navision Development II − C/SIDE Solution Development

Exercise A2 − Adding Multiple Dimensions
From the list form of a master file, like the Seminar List form, the user can select
several records and set the dimensions for all of them at one time by using the
Dimensions − Multiple option from the menu button. You will make some
modifications to the Default Dimensions-Multiple form to enable this
functionality for the seminar module.

1. In form 542 Default Dimensions − Multiple, create a function called
SetMultiSeminar for the form with an ID of 123456700 and a
parameter of a record variable of the Seminar table, which is passed
by reference.

2. Enter code in the function trigger so that the function runs the
CopyDefaultDimToDefaultDim function for every record in the
Seminar record variable.

3. Create two more functions, called SetMultiSemRoom and
SetMultiInstructor. Set the IDs of these functions to 123456701 and
123456702, respectively. Set the parameters and enter code into the
function triggers so that they copy the default dimensions for the
Seminar Room and Instructor records, respectively. They should do
this in a way similar to the SetMultiSeminar function that you have
just created.

4. Add the dimensions menu items to the Seminar List, Seminar Room
List and Instructors forms as shown in the GUI design.

Managing Seminar Planning
Diagnosis
You need a calendar system that gives an overview of seminar dates to help in
seminar planning.

Page 294

Chapter 13: Additional Exercises

Use Cases
Based on the results of the diagnosis, we can describe this requirement with the
following use case:

• Managing Seminar Planning

Analysis
The client's functional requirements describe the seminar planning overview in
the following way:

We need a calendar system that will give us an overview of our seminar dates to
help in seminar planning. We want to be able to view seminars by date and to set
filters to see the overview for seminars with a specific seminar status, seminar
room or instructor.

Using this information, we can further define how the management of the
seminar planning overview will be reflected in the program we are now creating.

Purpose
A seminar planning overview will provide a summary of all scheduled seminars
registered for any given period of time.

Preconditions
Calendar date information and seminar registration information must exist.

Postconditions
A seminar planning overview form will exist.

Page 295

Microsoft Navision Development II − C/SIDE Solution Development

Main Scenario
When seminar managers want to gain an overview of which seminars are
scheduled for certain dates, they will look at a seminar planning overview form
that allows them to view different dates and look at different periods of time
(such as a week or a month).

The program will use the company's Base Calendar (found by clicking GENERAL
LEDGER→SETUP→BASE CALENDAR) to schedule the seminar dates so they are not
held on weekends or on scheduled holidays.

Activity Diagram

Managing Seminar Planning Overview − Design
The processes and activities for this use case are quite simple, but the interaction
of the data that we will use to achieve this planning overview is somewhat
complex. The following diagram shows the relationship of the seminar
registrations to the dates that we want to show in the form:

The seminar planning overview will not be a table of information but only a
representation of the relationship between the existing data of seminar
registrations and calendar dates. This relationship is a many-to-many
relationship, which means that any number of seminars can be held on any
number of dates. Because of this many-to-many relationship, we require a
"matrix" type representation of the data.

For a review of matrix forms, please see Chapter 4.

Page 296

Chapter 13: Additional Exercises

GUI Design
You only need to create one form for the Seminar Planning overview, which
should appear as shown in the following screenshot.

Seminar Planning Form (Form 123456733):

The left side of the matrix shows the seminar registration header, and the right
side shows dates. The filters in the top allow us to filter on Status, Instructor or
Room.

The buttons along the bottom will be option buttons that change the view of the
dates. The "1" button shows the view by day, the "7" button shows the view by
week, the "31" button shows the view by month, the "3" button shows the view
by quarter and the "12" button shows the view by year. Finally, the last button
shows the view by accounting period.

Functional Design
You need the following function for the Seminar Planning overview:

CheckDate: A function that helps ensure that you do not schedule seminars for
"nonworking" days like weekends or holidays. This function takes a date as a
parameter, checks it against the company's Base Calendar to see whether the date
is a "working" date and return true or false depending on the answer.

Page 297

Microsoft Navision Development II − C/SIDE Solution Development

GetSelectionFilter: You need a function for the Instructor Filter and Room
Filter fields at the top of the form. When the user clicks the lookup button on
these fields, the program shows the Instructors form and Seminar Rooms List
form for the Instructor Filter and Room Filter fields, respectively. When, from
these forms, the user selects the values to use in the filter, the program should
read the selection and create a "filter string" that can be used by the SETFILTER
function to filter the Instructor and/or Room table.

For instance, suppose the user selected the fields shown in the following
screenshot:

You then want the GetSelectionFilter function to produce the string
'ROOM01..ROOM03.' On the other hand, if the user had selected only the first
and third records, you would want the string to be 'ROOM01|ROOM03.'

Table Design
To make this form work, create a Seminar Registration Buffer table. This will be
a simple table in which you can temporarily store information for this form.

Table 123456730 Seminar Registration Buffer contains the following fields:

No. Field Name Type Length Comment
1 Entry No. Integer Must not be blank.
2 Sem. Reg.

No.
Code 20 Relation to Seminar Registration

Header table.
3 Date Date
4 Allocation Decimal Decimal Places 0:1

Page 298

Chapter 13: Additional Exercises

Exercise A3 − Creating the Seminar Planning Form
1. Begin by creating form 123456733 Seminar Planning as a basic form

with a matrix box.

– The source table for the form will be a "vertical" table (as
described above), Seminar Registration Header.

– Give the matrix box the simple name of PlanningMatrixBox.
– Set the property for the matrix box to specify that the matrix box

is not editable.
– Set the matrix box source table as the virtual Date table.

Now add the buttons to the bottom of the form so that the user can control which
time periods are shown. The buttons at the bottom of the form are called
Trendscape option buttons. The Trendscape option button is a special control
type. Notice that they operate much like normal option buttons, except that they
use system bitmaps.

2. To make things simple, copy these buttons from a standard form.
You can use form 157 Item Availability by Periods for this purpose.
After you have copied them and pasted them to your form as shown
in the GUI design, look at the properties. Notice that their source
expressions are options of the global Option variable called
PeriodType. Copy this variable from the standard form as well, or
create it yourself. The options for this variable correspond to the
option buttons: Day, Week, Month, Quarter, Year and Period.
Delete the code in the OnPush trigger of these buttons.

3. Add three text boxes to the left side of the matrix box. The source
expressions for these text boxes will be the No. field, the Seminar
Code field and the Seminar Name field. Set the property to specify
that the Seminar Name field expands and contracts with the form
size.

4. Add the matrix body and matrix heading text boxes to the right side
of the matrix box as described above.

5. The matrix heading text box is where you want the starting date of
each period to show. Because the period starting date changes
depending on the Period Type chosen by the user (using the
Trendscape option buttons), the expression used to calculate the
value for this field will be a variable. Set the source expression for
the heading to a global variable with the data type Text, called
MatrixHeader.

Page 299

Microsoft Navision Development II − C/SIDE Solution Development

6. The matrix body text box contains the number of days allocated for
the seminar. This is a calculated value that depends on the Period
Type chosen by the user (using the Trendscape option buttons), so
the source expression must be a variable that we calculate in the code
for the form. Therefore, set the source expression for the body to a
global variable with the data type Decimal, called AllocationDay. Set
the properties for the matrix body text box so that the decimal places
are 0:1 and so that the field is blank when the value is 0.

7. Add a tab control to the top of the form as shown in the GUI design.
Set the property to specify that the tab expands and contracts with
the form size.

8. Add the text boxes (with labels) for the three filter fields at the top of
the form on the tab control. The source expressions for these fields
will also be global variables.

– The source expression for the Status Filter field is an option-
type variable named StatusFilter, with the options corresponding
to the status options for seminars (except for the Closed option,
because we do not want to see old seminar data). There is an
additional option of None so that the user can choose to see all
seminars regardless of status.

– The source expression for the Instructor Filter field is a text-
type variable named InstructorFilter. Set the property for the text
box so that the field is not cleared when the user performs a
lookup.

– The source expression for the Room Filter field is a text-type
variable named RoomFilter. Set the property for the text box so
that the field is not cleared when the user performs a lookup.

Exercise A4 − Adding Code to the Seminar Planning Form
You first need to make some changes to existing forms.

1. In the Seminar Room List form, create a new function called
GetSelectionFilter with a return type of Code and a length of 80. The
function must ultimately create a string that can be used as a filter
from the user's selection from the form. See the Functional Design
for more information on this function.

– Create a local variable called SelectionFilter with data type Code
and a length of 250. This variable stores the filter.

– Begin by storing the user's selection from the form in a local
variable for the Seminar Room record, called SemRoom.

HINT: Do this by using the SETSELECTIONFILTER function of the CurrForm
variable.

Page 300

Chapter 13: Additional Exercises

– Go through the selection of records in the SemRoom variable
and add the Code field for each selected record to the
SelectionFilter. Do not forget to add the '|' or '..' between the
entries.

2. Create a similar function for the Instructors form. Create a new
function called GetSelectionFilter with a return type of Code and a
Length of 80. The code for this function is the same as what you
created for the GetSelectionFilter function in the Seminar Room List
form, except that you use different variables to get Instructors instead
of Seminar Rooms.

Next, calculate the values to fill the matrix body. To do this, use a new Seminar
Registration Buffer table (shown in the table design) as a temporary table. You
need a temporary table because you do not want to fill a table with permanent
data every time the seminar planning overview is used. Instead, you want a table
that is filled and emptied with the use of the form.

3. Create table 123456730 Seminar Registration Buffer as shown in the
table design.

– The primary key is the Entry No. field.
– Set the SumIndexFields property for the key to Allocation.
– Declare the Seminar Registration Buffer as a temporary table

global variable in your Seminar Planning form.

Now that you have created the temporary table and declared it as a variable,
create the code in the Seminar Planning form that will bring the form to life.

4. To begin with, you need to tell the program which record in the Date
table to find first so that it shows the work date rather than starting
with the first date on the Date table, January 1,0000. Enter code in
the OnFindRecord trigger of the matrix box to get the first date to
show. To do this, use the FindDate function in the
PeriodFormManagement codeunit. The FindDate function expects
three parameters: a search string, a calendar and a period type. As the
search string, use the Which parameter of the OnFindRecord trigger.
For the calendar parameter, use the matrix rec. Note that the
OnFindRecord trigger returns a Boolean value, so use the EXIT
function to return the value of the FindDate function.

5. Enter code in the OnNextRecord trigger of the matrix box to get the
next date. To do this, use the NextDate function in the
PeriodFormManagement codeunit (returns an integer).

Page 301

Microsoft Navision Development II − C/SIDE Solution Development

6. In the code for the matrix box, set the value for the MatrixHeader
variable. You do this in the OnAfterGetRecord trigger of the matrix
box. For this, use the function CreatePeriodFormat from the standard
codeunit PeriodFormManagement, which will return the value for
the MatrixHeader. As parameters, this function expects a period type
and a date. In this case, the period type will be that which was
selected by the user (with the Trendscape option buttons), and the
date parameter will be the starting date from the virtual Date table.
To reference the source table of the matrix box, use the following
formula: CurrForm.<Matrix Box Name>.MatrixRec.<Field Name> .
Test your code by running the form and testing the period option
buttons.

You now need a function to check whether dates are "working" or "nonworking",
as described in the functional design.

7. Create a CheckDate function for the Seminar Planning form as
described in the functional design. This function checks the date
suggested against the changes to the company's base calendar, stored
in table 7601 Base Calendar Changes, to see whether the date is a
"Nonworking" date. The function will get the Base Calendar Code
from the Company Information table and find the corresponding
records in the Base Calendar Changes table. If the date to check is
found in any of the "nonworking" dates on the table, the function
returns false.

HINT: Use the DATE2DMY and DATE2DWY functions to work with the dates.

Next, you want the buffer table to be filled with the dates on which the seminars
will run, the buffer to be filled every time the form is opened and every time the
user clicks a period type option button.

8. Create a FillBuffer function that first resets the Seminar Registration
Header table and empties the buffer table. Then, for every line in the
Seminar Registration Header table, for every day in the Duration of
the seminar, the function inserts a line into the buffer table with a
date for the seminar to run on (using the CheckDate function to make
sure the date is a working day).

HINT: Use the CALCDATE function when working with the dates.

– Call the FillBuffer function from the appropriate places in the
form and option button triggers.

The next step is to set the AllocationDay variable with information from the
buffer table.

Page 302

Chapter 13: Additional Exercises

9. Enter code in the appropriate trigger so that when the matrix box gets
a record, the program filters the buffer table on the Seminar
Registration No. and on the dates that fall between the Period Start
and Period End for the date table, and then performs a CALCSUMS
on the Allocation field in the Seminar Registration Buffer. The value
for the AllocationDay variable will be the result of the CALCSUMS.

You now need to add code to enable the filter fields at the top of the form.

10. Write a function called SetRecFilters to filter the Seminar
Registration Header table using the values entered into each of the
filter fields at the top of the form. At the end of the function, the
program updates the current form using the UPDATE function.

– Call the SetRecFilters function from the appropriate triggers so
that it runs when the form is opened and after the user enters or
changes a value in the filter fields.

11. Enter code in the appropriate trigger so that when the user performs a
lookup on the InstructorFilter field, the program runs the
Instructors form modally. If the user selects a record and clicks OK,
the program stores the result of the GetSelectionFilter function from
the Instructors form in a text variable, and exits TRUE. If the user
clicks Cancel from the form, the program exits FALSE.

12. Enter code in the appropriate trigger so that when the user performs a
lookup on the RoomFilter field, the program runs the Room List
form modally. If the user selects a record and clicks OK, the
program stores the result of the GetSelectionFilter function from the
Room List form in a text variable, and exits TRUE. If the user clicks
Cancel from the form, the program exits FALSE.

13. Finally, set up the drilldown on the matrix body text box so that it
opens the Seminar Registration List form for the appropriate
seminar.

14. Test your Seminar Planning form.

Conclusion
In this section, you added some additional functionality to the seminar module to
conform with Microsoft Navision standards for dimensions and multilanguage.
You also created a seminar planning overview that brings together information
from our seminar registrations and the system's virtual date table.

Page 303

Microsoft Navision Development II − C/SIDE Solution Development

Page 304

Appendix A: Sample Reports

APPENDIX A: SAMPLE REPORTS
This appendix contains samples of the following reports:

• Sample Participant List
• Sample Certificate Confirmation

Page 305

Microsoft Navision Development II − C/SIDE Solution Development

Sample Participant List
Seminar Registration - Participant List May 23, 2004
CRONUS International Ltd. Page 1

No. REG00001
Seminar Code SEM0002
Seminar Name Solution Development
Starting Date 01.08.03
Duration 10
Instructor Name Annette Hill
Room Name Room 1

Bill-to Customer No. Participant Contact No. Participant Name
10000 CT100140 David Hodgson
10000 CT100156 John Emory
10000 CT000001 Mindy Martin
10000 CT100210 Stephanie Bourne
30000 CT200080 Pamela Ansman-Wolfe
30000 CT200079 Tina Gorenc

Page 306

Appendix A: Sample Reports

Sample Certificate Confirmation

Participant Certificate

David Hodgson
has participated in seminar
Solution Development
on January 8, 2004

 Annette Hill

Page 307

Microsoft Navision Development II − C/SIDE Solution Development

Page 308

Appendix B: Sample XML Participant List

APPENDIX B: SAMPLE XML PARTICIPANT LIST
This appendix contains an example of the output from the XML Sem. Reg.-
Participant List report.

Page 309

Microsoft Navision Development II − C/SIDE Solution Development

Sample XML Sem. Reg.-Participant List
- <Seminar_Registration_-_Participant_List>
 - <Seminar>
 <No>REG00001</No>
 <Seminar_Code>SEM0002</Seminar_Code>
 <Seminar_Name>Solution Development</Seminar_Name>
 <Starting_Date>01.08.01</Starting_Date>
 <Duration>10</Duration>
 <Instructor_Name>Annette Hill<Instructor_Name />
 <Room_Name>Room 1</Room_Name>
- <Participant>
 <Customer_No>10000</Customer_No>
 <Contact_No>CT100140</Contact_No>
 <Name>David Hodgson</Name>
 </Participant>
- <Participant>
 <Customer_No>10000</Customer_No>
 <Contact_No>CT100156</Contact_No>
 <Name>John Emory</Name>
 </Participant>
- <Participant>
 <Customer_No>10000</Customer_No>
 <Contact_No>CT000001</Contact_No>
 <Name>Mindy Martin</Name>
 </Participant>
- <Participant>
 <Customer_No>10000</Customer_No>
 <Contact_No>CT100210</Contact_No>
 <Name>Stephanie Bourne</Name>
 </Participant>
 </Seminar>
 </Seminar_Registration_-_Participant_List>

Page 310

Appendix C: Using C/FRONT

APPENDIX C: USING C/FRONT
This appendix contains the following sections:

• Introduction
• Using C/FRONT
• Two Interfaces − DLL and OCX
• Accessing Data From the Database Using C/FRONT and Microsoft®

Visual Basic®
• Limitations of C/FRONT

Page 311

Microsoft Navision Development II − C/SIDE Solution Development

Introduction
This appendix provides information on C/FRONT. However, this course is not a
substitute for reading the C/FRONT Reference Guide. For information on
C/FRONT installation and setup, please refer to the C/FRONT Reference Guide
or the Microsoft® Business Solutions–Navision® Development I manual.

Using C/FRONT
C/FRONT is an application programming interface that can be used to access a
C/SIDE database. C/FRONT facilitates high-level interaction with the C/SIDE
database manager, and allows C developers to manipulate any C/SIDE database.

The central component of C/FRONT is a library of C functions. These functions
give you access to every aspect of data storage and maintenance, and allow you
to integrate both standard and custom applications with your C/SIDE database.

Since C/FRONT is a front end to Microsoft® Business Solutions−Navision®
Attain, you may want to use C/FRONT to add, delete or view data in your own
applications. Furthermore, you may need to create and manipulate table objects
or to find out information from tables, which is something you cannot do when
using the C/ODBC driver. C/FRONT is much faster than using the C/ODBC
driver and is as close to the native connection as you can get with Microsoft
Navision Attain. However, in order to use C/FRONT, you must use some other
programming language such as Delphi, Kylix, C#, C++, C, or Visual Basic.
C/FRONT provides two methods of accessing Microsoft Navision Attain − either
through a C style DLL or through the use of the OCX interface. Our examples
will use Microsoft® Visual Basic® 6.0 and the OCX.

Two Interfaces − DLL and OCX
Differences Between the C/FRONT API DLL and OCX
There are a number of differences between the C/FRONT API DLL and the
OCX. The C/FRONT API DLL is primarily intended for C programmers, but can
be used with any language and compiler that can load and use DLLs and that use
the _CDECL calling convention. The OCX is primarily used for gaining easy
access to Navision Attain databases from environments like Microsoft® Excel
and Microsoft® Word or Microsoft Visual Basic.

The C/FRONT Reference Guide is really intended for the DLL and for the C
programmer but can be used with the OCX as well. It provides some background
information, and contains a considerable number of examples. If you are
acquainted with the DLL, it is recommended that you read the online Help for a
function before you use it through the OCX − there are a number of differences.
Furthermore, some functions in the DLL have no equivalent in the OCX, and
there are a couple of new functions in the OCX. You should also note that errors
are handled differently. For example, you cannot install your own error or
message handler to replace the default one when you use the OCX.

Page 312

Appendix C: Using C/FRONT

General Differences
• Where all the functions in the DLL are named DBL_*, the

corresponding methods in the OCX do not use the DBL_ prefix. For
example, the method that corresponds to the DBL_OpenDatabase
function is OpenDatabase.

• The GetLastErrorCode in the DLL has an equivalent in the LastError
method in the OCX.

• The Field_2_Str function in the DLL has an equivalent in the
FieldToStr method in the OCX.

• Closing dates cannot be used in the OCX. If a closing date is
retrieved from the database, it will be considered a normal date, and
there is no way to put a closing date into the database from the OCX.

• There are no hundredths of seconds in Time values in the OCX.
• The Allow function is replaced by four methods −

AllowKeyNotFound, AllowRecordExists, AllowRecordNotFound
and AllowTableNotFound.

Functions Without Equivalents
There is no longer any need for the conversion functions, because functions
such as GetFieldData and AssignField use the Variant data type. The following
functions therefore have no equivalents in the OCX:

• Alpha_2_Str
• BCD_2_Str
• Date_2_Str
• Date_2_YMD
• HMST_2_Time
• Str_2_Alpha
• Str_2_BCD
• Str_2_Date
• Str_2_Time
• Time_2_HMST
• Time_2_Str
• YMD_2_Date

Page 313

Microsoft Navision Development II − C/SIDE Solution Development

Error handling is different in the OCX (see Error Handling in the C/FRONT
manual) and you cannot replace the default error or message handler with a
function of your own. However, we recommend that you do make sure that you
include plenty of error checking because the majority of errors that occur happen
because the wrong values have been set. The following functions have therefore
no equivalents in the OCX:

• SetExceptionHandler
• SetMessageShowHandler

When the OCX is used, there is no need for explicit initialization and
deinitialization. Therefore, the following functions have no equivalents in the
OCX:

• Exit
• Init

The following two functions have been omitted because the changed
functionality of GetFieldData makes them less necessary and also because the
environments from where the OCX will typically be used do not support the use
of pointers to the same degree as C does.

• GetFieldDataAddr
• GetFieldDataSize

The following function is still retained in the DLL in order to make it easier to
port applications from the C-Toolkit for Navision 3.XX. This function is not
needed in the OCX.

• FieldDataOffset

Accessing Data From the Database Using C/FRONT in Visual
Basic

The following example that we review, assumes that you want to open a
predefined database, the customer table, and that you wish to display the
customers in a list form. The example does not explain how to use Visual Basic.

1. Open Visual Basic and choose the type of project (Standard.Exe) and
then click Open.

2. Select Project1 inside the Project Window and right-click and select
Rename. Rename your project to Cfront_Test.

Page 314

Appendix C: Using C/FRONT

3. Click on the Form1 in the Project Window and then select the
properties. Set the following properties:

Name = MainForm

Height = 6450

Width = 6650

Startup Position = 2 - CenterScreen

4. Click Projects and select components or use the shortcut key
sequence of (Ctrl + T). Next, select Cfront OLE Control Module,
Microsoft Common Dialog SP3, and Microsoft FlexGrid Control 6.0
(SP3). Make sure that there is a check mark in the box beside each
component name.

5. Declare some variables that we will need. Click View from the main
menu and select Code. The code window appears. Select (General)
from the left drop-down list and (Declarations) from the right drop-
down list and then create the following public variables.

Public NavisionPath As String
Public LicenseFileName As String
Public DatabaseFileName As String
Public CompanyName As String
Public UserId As String
Public TableNo As Long
Public TableHandle As Long
Public hRec As Long
Public GridRow As Integer
Public GridCol As Integer

6. We need to create our own menu. Click Tools from the main menu

and select Menu Editor or press CTRL + E. Add the following menu
options − File, Open, Exit, View, and Write with Open and Exit
indented under file. Furthermore, note the each menu option must
have a caption and a name. Therefore, give the menu options
previously described and create the captions as shown in the picture
above.

7. Double-click on the OCX icon in the Components Window, this
places the OCX (CFront) on the form. Select the OCX icon and
move it up to the top left of the form. Next, set the following
properties:

Visible = No
(Name) = Cfront

NOTE: You may want to shrink the size of the icon to where it's no larger than the
command button.

Page 315

Microsoft Navision Development II − C/SIDE Solution Development

8. Double-click on the CommonDialog icon in the Components
Window; this places the CommonDialog component icon on the
form. Select the CommonDialog component icon and move it up to
the top of the form on the right side of the Cfront icon. Change the
name property from CommonDialog1 to CommonDialog.

9. Double-click on the MSFlexGrid icon in the components Window,
this places the MSFlexGrid component on the form. Set the
following properties:

(Name) = TableBox
Top = 520
Height = 5655
Width = 6495
Rows = 0
TabIndex = 0

10. Now it's time to add some code. Select File and then Open from the

menu that we've created. This should automatically open the Code
window and create a procedure Open_Click. Add the following code
to the Open_Click procedure.

'If connecting to a Navision database
DriverName = "NDBCN"
ServerName = ""
NetType = "tcp"
CacheSize = 1000
UseCommitCache = 0
NTAuthentication = 0
UserId = ""
Password = ""
'If connecting to a SQL Server database
'DriverName = "NDBCS"
'NetType = "Named Pipes"
'CacheSize = 0
'UseCommitCache = 0
'NTAuthentication = 1 'Yes

Page 316

Appendix C: Using C/FRONT

NOTE: If you are using Microsoft® SQL Server® you still have to enter a zero value
for CacheSize or UseCommitCache even though they only apply to the Navision
Server.

CommonDialog.ShowOpen
DatabaseFileName = CommonDialog.FileName
NavisionPath = Mid(CommonDialog.FileName, 1,
InStr(1, CommonDialog.FileName,
CommonDialog.FileTitle, vbTextCompare) - 2)
DatabaseFileName = CommonDialog.FileTitle

'Set the license file to be in the location where
'the database is located
LicenseFileName = NavisionPath + "\fin.flf"
CFRONT.SetNavisionPath NavisionPath
CFRONT.LoadLicenseFile LicenseFileName
CFRONT.CheckLicenseFile (9110)
Call
CFRONT.ConnectServerAndOpenDatabase(DriverName,
ServerName, NetType, DatabaseFileName, CacheSize,
UseCommitCache, NTAuthentication, UserId,
Password)
CompanyName = "CRONUS International Ltd."
CFRONT.OpenCompany CompanyName

 The driver name is very important. Please note the code above uses

NDBCN for the Microsoft Navision server and NDBCS for the SQL
Server. If the open/connect operation fails, the function raises an
exception that terminates the application. Please note that only one
database/server connection can be open at a time.

 Only one company can be open at a time. You must open a company
before the application can access the data in the database tables.
However, you can have any number of tables within a single
company open at the same time. A table is identified by a unique
number; therefore, when a table is opened, the database manager
returns a unique handle, which remains valid until the table is closed.
This handle must be passed to all operations that are carried out on
the table. Note the code above also checks to ensure that the license
file includes permissions for C/FRONT. If not, an error message
appears.

Page 317

Microsoft Navision Development II − C/SIDE Solution Development

Next, in the left drop-down list of the Code Window, select Exit and
add the following code:

If TableHandle <> 0 Then
 CFRONT.CloseTable (TableHandle)
End If
If CompanyName <> "" Then
 CFRONT.CloseCompany
End If
If Connected Then
 CFRONT.DisconnectServer
End If
CFRONT.ReleaseAllObjects
MainForm.Hide

 Note that we must put some error checking so that we do not receive

errors when trying to exit our application if we have not opened the
company or viewed the records. If you do not have the code for the
TableHandle, you receive Error 12000 − Invalid Handle. If you do
not have the code to check for the CompanyName, you receive Error
1046 No Company Selected. Finally, notice that after disconnecting
from the server, make sure that you release all objects to ensure that
you've freed any memory used by C/FRONT.

11. Next, in the left-hand drop-down list of the Code Window select
View and add the following code:

Dim CurRow As Long
TableNo = 23 'Vendor
If Not MainForm.CFRONT.OpenTable(TableHandle,
TableNo)
Then

 MsgBox "Unable to Open Table 23 − Vendor."
 Return
End If

Page 318

Appendix C: Using C/FRONT

 If the table number is not found, an error message that the table
cannot be found will be displayed and then you will receive Error
1001 − Table does not exist.

GridRow = 0
NumColumns = 1
FieldNo = MainForm.CFRONT.NextField(TableHandle,
0)
While FieldNo > 0
 NumColumns = NumColumns + 1
 TableBox.Cols = NumColumns
 TableBox.Row = GridRow
 TableBox.Col = NumColumns - 1
 TableBox.Text =
 MainForm.CFRONT.FieldName(TableHandle, FieldNo)
 FieldNo = MainForm.CFRONT.NextField(TableHandle,
 FieldNo)
Wend
'load the data
hRec = MainForm.CFRONT.AllocRec(TableHandle)
If MainForm.CFRONT.FindRec(TableHandle, hRec, "-")
Then
 GridRow = 1
 Do
 RecFields = "" & GridRow
 GridRow = GridRow + 1
 FieldNo =
MainForm.CFRONT.NextField(TableHandle,0)
 While FieldNo > 0
 RecFields = RecFields & Chr(9) &
 MainForm.CFRONT.FieldToStr(TableHandle, hRec,
 FieldNo)
 FieldNo =
MainForm.CFRONT.NextField(TableHandle, FieldNo)
 Wend
 TableBox.AddItem RecFields
 Loop Until MainForm.CFRONT.NextRec(TableHandle,
hRec, 1) = 0
End If
MainForm.CFRONT.FreeRec hRec

 If you use a row value that does not exist, you receive error message
3009 − Invalid Row Value.

Page 319

Microsoft Navision Development II − C/SIDE Solution Development

Writing Data Back to the Database Using C/FRONT in
Microsoft Excel

Microsoft Navision Attain comes with an excellent example that demonstrates
both reading and writing to the Budget Table. Furthermore, the example shows
you how you can create your own error routine, unlike the OCX example that we
used in Visual Basic, which is not allowed to have a custom error routine.

Limitations of C/FRONT
• Windows do not go in to standby or hibernation if there is an open

server connection from C/FRONT.
• Entries made by C/FRONT will not fire triggers to execute any code

validation.
• C/FRONT is very particular and looks in different places at different

times for a license. Check and make sure you have the license loaded
everywhere it needs to be, that is client, server, and so on.

• Besides the limitations, a common misconception that many have is
that C/FRONT can be used in place of multiple sessions. However,
this is not the case. Every connection in C/FRONT is treated as a
session.

• As with regular Microsoft Navision, the client and ODBC, the
versions of CFRONT must match the version of the SERVER that
you are trying to connect to.

• Keys can be active or inactive. You cannot activate keys from within
C/FRONT; therefore, only active keys are available to C/FRONT.

Page 320

Appendix D: Answers to Review Questions

APPENDIX D: ANSWERS TO REVIEW QUESTIONS
This appendix contains answers to the Review Questions to Chapter 12.

Page 321

Microsoft Navision Development II − C/SIDE Solution Development

Answers to Review Questions
1. OnPreDataItem and OnPostDataItem.

2. OnInsert of the table.

3. The code will be as follows:

IF Seminar.GET(SeminarNo) THEN…

4. The code will be as follows:

Form.RUNMODAL

5. The error will appear as follows:

ERROR('%1 cannot be greater than %2.',FIELDNAME("Minimum
Participants"), FIELDNAME("Maximum Participants"));

6. VALIDATE.

7. A virtual table contains information provided by the system.

8. CALCFIELDS.

9. CALCSUMS.

10. The SETRANGE will appear as follows:

SETRANGE("Starting Date", FirstDate, SecondDate);

The SETFILTER will appear as follows:

SETFILTER("Starting Date",'%1..%2', FirstDate, SecondDate);

11. FIND.

12. COMMIT.

13. In the codeunit's Documentation trigger, you will include the date,
your initials, a reference number and a brief description of the
changes made. At the position where you made the changes, you will
mark the beginning and the end of the changes with your initials and
the reference number from the Documentation trigger.

14. Post Line; Post Batch.

Page 322

Appendix D: Answers to Review Questions

15. You must exercise caution when importing objects as text files
because the program does not run a check to compare the imported
object with the existing object. Therefore, the Import Worksheet will
not open when importing these files, and the old objects will be
automatically overwritten.

16. The code will appear as follows:

IF xRec."Room Code" <> Rec."Room Code" THEN…

17. RunFormLink and RunFormLinkType.

18. The Check Line codeunit checks the validity of the Journal Line that
is passed to it. It checks whether the line is empty, and it checks that
certain key fields like the Posting Date and Document No. are not
blank.

19. If the RECORDLEVELLOCKING property is TRUE, it means that
the SQL Server Option is being used.

20. When writing a report, you should be careful to create data items
from the appropriate tables and in the right order, to use the
appropriate keys and to filter the data items properly.

21. F11.

22. Yes, because the record variable represents the records as well as the
filters and key from the associated table.

23. OnLookup.

24. Transfers the fields from the Seminar Registration Header record to
the Posted Seminar Registration Header record where the field
numbers and types are the same between the two records.

25. The following code will appear in the OnFormat trigger:

IF ("Starting Date" <= WORKDATE + 3) THEN
 CurrForm."Starting Date".UPDATEFONTBOLD;

26. You would write a dataport to import the data into the Seminar
Journal Line table and use it to call the Seminar-Post codeunit.

27. Global, Shortcut, and Budget.

28. DataCaptionFields.

29. HorzGlue and VertGlue.

30. TABLECAPTION and FIELDCAPTION.

31. FieldClass = FlowFilter.

32. Seminar.MODIFYALL("Minimum Participants",5);

Page 323

Microsoft Navision Development II − C/SIDE Solution Development

33. If CurrReport.SKIP is called, the next record in the Seminar
Registration Line data item will be processed. If CurrReport.BREAK
is called, the next record in the Seminar Registration Header data
item will be processed.

34. CurrReport.QUIT.

35. OnPreReport.

36. CurrReport.SHOWOUTPUT(ShowList);

Page 324

Index

INDEX

Data Conversion... 258 ActiveX..240
Data Model ... 7, 11, 311 Analysis Phase ...4
Data Types Application Designer's Guide3, 11, 109, 240

ApplicationHandler, Navision Attain................247 Complex.. 20
Record .. 20 Audience, Target...2

Dataport Triggers.. 260 Automation data type247
OnAfterExportRecord 260 Automation Data Type239
OnAfterImportRecord...................................... 260 Automation Server, Using an239
OnBeforeExportRecord 260 Base Calendar Changes (Table)302
OnInitDataPort .. 260 BREAK, Using the CurrReport Function162
OnPostDataItem ... 260 Breakpoint on Triggers....................................107 OnPostDataport .. 260 Breakpoints ...107 OnPreDataport.. 260 Business Case, Executive Summary8 Date Virtual Table... 62 C/FRONT®, ...201 Debugger.. 107 C/SIDE Reference Guide..............3, 4, 19, 64, 65 Debugging Tools .. 107 CALCFIELDS, Using the Method......................24 Default Dimension (Table).............................. 206 CaptionML...24, 59 Defining a Record Set 22 Certificate Confirmation,

 Creating the Report for175 DELETE, Using the Function............................ 23
Demonstration Data.. 3 Certificate Confirmation,

 Use Case 2−Managing173 Deployment Phase 4, 257
Design Phase ... 4 Analysis ...173 Developer's Toolkit ... 201 Design ...174 Development & Testing Phase 4 Development and Testing175 Diagnostic Phase.. 4 Certification, Navision Solution Development3 DimensionManagement (Codeunit)......... 97, 206, Check Line Codeunit...97 ... 207, 208, 213, 221 Client Monitor..109 Dimensions... 199 CLOSE, Using the CurrForm Function64

Budget... 199 Code Comments ...104 Global.. 199 Code Coverage...108 Shortcut... 199 Codeunit Triggers ...19 Tables ... 200 Documentation ..19 Dimensions in Invoicing,
 Modifying the Report for 233 OnRun ...19

COM......................See Component Object Model Dimensions in Master Files Comment Line (Table)32, 44 Modifying Tables and Forms for 208 COMMIT Function...................103, 105, 106, 322 Modifying the
 DimensionManagement Codeunit for 207 Using the ...105

Complex Data Types ..20 Dimensions in Registration Component Object Model (COM)239 Modifying Tables for 214
Configuration Checklist258 Modifying the Forms for 219
Confirmation Modifying the Tables and Forms

 in Posted Seminar Registrations for 221 CertificateSee Certificate Confirmation
E-mailSee E-mail Confirmation Dimensions, Story 7−Managing

Contact Card (Form) ...28 Diagnosis .. 203
Contact List (Form) ...28 Review Questions... 235
Content, Course..3 Use Cases .. 203
COPY, Using the Function................................24 Dimensions,

 Use Case 1−Managing in Master Files 204 COUNT, Using the Function24
Courseware...3 Analysis... 204
Create Seminar Invoices (Report)178, 233 Design... 205
CREATETOTALS,
 Using the CurrReport Function162

Development & Testing 206
Dimensions,
 Use Case 2−Managing in Registration........ 210 Custom Controls, Using240

Analysis... 210 Customer Card (Form)......34, 123, 124, 125, 132

Page 325

Microsoft Navision Development II − C/SIDE Solution Development

Design ... 211 Seminar Registration...9
Dimensions,
 Use Case 3−Managing in Seminar Posting. 223

Seminars ...9
GET, Using the Function...................................21
Go Live..261 Analysis... 223
Historical Data, Importing................................259 Design ... 224

Development & Testing................................... 226 Implementation Methodology4
Dimensions,
 Use Case 4−Managing in Invoicing............... 231

Import Contact (Dataport)................................260
Importing Document and Ledger Data259

Analysis... 231 INIT, Using the Function....................................23
Design ... 232 InMatrix Property ...61
Development & Testing........................... 233, 234 InMatrixHeading Property..................................61

Document Dimension (Table) 200, 213, 218 INSERT, Using the Function23
Document Posting Routines 101 Instructor (Table)40, 206
Documentation Instructors

Code Comments ... 104 Creating Tables and Forms for..........................40
In Existing Objects .. 104 Functional Requirements9

Documentation Trigger 17, 18, 19, 104, 322 Instructors (Form)......................................40, 293
Duration, Course... 3 Instructors, Use Case 3–Managing...................38
EDITABLE Analysis ...38

Using the CurrForm Function............................ 65 Design ...39
Using the Form Control Function 65 Development & Testing40

E-mail Confirmation, Use Case 1−Managing . 245 Integration, Story 4–Managing
Analysis... 245 Diagnosis...146
Design ... 246 Review Questions..156
Development & Testing................................... 247 Use Cases ...146

Errors Interfaces, Functional Requirements.................10
Program Logic... 107 Interfaces, Story 8−Managing
Runtime... 107 Diagnosis...244
Syntax ... 107 Review Questions..254

Event Triggers .. 17 Use Cases ...244
Exporting Objects as Text Files 57 Invoice Posting, Creating the Report for178
Extended Text Header (Table) 32, 37, 44 Invoice Posting, Use Case 3−Managing.........176
Extended Text Line (Table) 32, 44 Analysis ...176
FIELDCAPTION function 58, 59 Design ...177
FIELDCAPTION Function........................... 58, 59 Development & Testing178
FIND, Using the Function 21 Invoicing, Functional Requirements10
FlowFields, Creating FlowFields for Sums 191 Item Availability by Periods (Form)..................299
FlowFields, Use Case 1−Managing................ 189 Job Jnl.-Post Line (Codeunit) ..127, 133, 135, 229

Development & Testing................................... 191 Job Journal Line (Table)..................................118
FlowFilters,Using .. 187 Job Ledger Entry (Table).................................118
Form and Control Functions, Additional 64 Journal Tables...95
Form Triggers Keys and Queries, Performance Issues with ..106

OnActivateForm .. 19 Ledger Data, Importing....................................259
OnAfterGetCurrRecord 19 Ledger Entry Tables..95
OnAfterGetRecord .. 19 LOCKTABLE Function105, 106, 284
OnBeforePutRecord.. 19 Using the ...105
OnCloseForm.. 19 Main Menu...147
OnDeactivateForm.. 19 Maintain Relationships Setting25 OnDeleteRecord ... 19 MAPIHandler ...247, 248 OnFindRecord... 19 Master Data, Importing....................................259 OnInit... 19 Master Files, Story 1–Managing OnInsertRecord... 19

Diagnosis...26 OnModifyRecord ... 19
Review Questions..52 OnOpenForm .. 19
Use Cases ...26 Function Trigger.. 17 Matrix Forms ...60 Functional Requirements.................................... 9 MatrixBox Form Control60, 61 Instructors ... 9

Methodology, Implementation4 Interfaces .. 10
Microsoft SQL Server, Table Relations25 Invoicing .. 10
MODIFY, Using the Function23 Participants ... 9
Modifying the Database Record........................23 Reporting and Statistics 10

Page 326

Index

Multilanguage Functionality24, 52, 58 Design... 166
Development & Testing 167 In Objects ..24

Participants, Functional Requirements............... 9 In Text Messages ..58
Navigate..146, 152, 154 Participants, Use Case 4–Managing 27
Navigate (Form)150, 154 Analysis... 27

Design... 28 Navigate Integration, Modifying Objects for154
Development & Testing 28 Navigate Integration, Use Case 2–Managing .152

Performance Issues.. 105 Analysis ...152
Keys and Queries ... 106 Design ...152
Reducing Impact on Network Traffic............... 106 Development & Testing154, 155
Reducing Impact on the Server 106 Navision Developer's Toolkit, Using................201

PeriodFormManagement (Codeunit) 301, 302 NEWPAGE, Using the CurrReport Function...162
Post Batch Codeunit... 98 NEXT, Using the Function21
Post Line Codeunit ... 97 NoSeriesManagement (Codeunit) .46, 47, 48, 82,
Posted Seminar Charge (Table)..................... 118 ... 83, 84, 86, 137
Posted Seminar Charges (Form).................... 114 Objectives, Training ..2
Posted Seminar Reg. Header (Table) 118, 213 OCX
Posted Seminar Reg. Line (Table) 213 Controls, Using..240
Posted Seminar Reg. List (Form) 116 OnActivateForm Trigger....................................19
Posted Seminar Reg. Subform (Form) ... 115, 212 OnAfterExportRecord Trigger260
Posted Seminar Registration (Form) 115, OnAfterGetCurrRecord Trigger...................19, 60
... 153, 212 OnAfterGetRecord Trigger.................19, 60, 163,
Posting ... 183, 283, 286, 302

Invoice................................... See Invoice Posting OnAfterImportRecord Trigger260
Seminar RegistrationSee Seminar OnBeforeExportRecord Trigger260
... Registration Posting OnBeforeImportRecord Trigger260

Posting Routines .. 96 OnBeforePutRecord Trigger19, 60
Companion Codeunits 96 OnCloseForm Trigger19
Document.. 101 OnDelete Trigger18, 23, 240 Standardized Object Names............................. 96 OnDeleteRecord Trigger...................................19 Posting, Story 3–Managing OnFindRecord Trigger19, 60, 301 Diagnosis .. 110 On-going Support Phase4 Review Questions... 141 OnInit Trigger ..19 Use Cases .. 110

OnInitDataPort Trigger....................................260 PREVIEW, Using the CurrReport Function 162
OnInitReport Trigger161, 183 ProcessingOnly Property................................ 163
OnInsert Trigger......17, 18, 19, 23, 240, 283, 322 Processing-only Reports 163
OnInsertRecord Trigger19, 283 Program Logic Errors 107
OnLookup Trigger19, 323 Project Evaluation... 261
OnModify Trigger18, 19, 23, 240 Project Plan .. 12
OnModifyRecord Trigger...................................19 QUIT, Using the CurrReport Function 162
OnOpenForm Trigger..19 READPERMISSION property......................... 154
OnPostDataItem Trigger .161, 183, 260, 283, 322 Record Data Type .. 20
OnPostReport Trigger.....................................161 Defining a Record Set....................................... 22
OnPreDataItem Trigger..................161, 162, 183, Modifying... 23
... 260, 283, 322 Retrieving a Record .. 21
OnPreDataport Trigger260 Record Set, Defining a 22
OnPreReport Trigger161, 183, 324 RECORDLEVELLOCKING Property 105
OnPreSection Trigger162 Reducing Impact on Network Traffic 106
OnRename Trigger18, 19, 23 Reducing Impact on the Server 106
OnRun Trigger19, 97, 226, 227, 229 Registrations, Story 2−Managing
OnValidate Trigger............................19, 284, 285 Diagnosis 66, 291, 293, 294
OnValidate Ttrigger...24 Review Questions... 91
PAGENO, Using the CurrReport Function......162 Use Cases .. 66, 295

RENAME, Using the Function 23 Participant List Report
Report Functions .. 162 Creating the Report for....................................168
Report Triggers... 161 XML See XML Participant List

Participant List Reporting,
 Use Case 1−Managing165

Reporting, Functional Requirements 10
Reporting, Story 5−Managing

Analysis ...165 Diagnosis .. 164

Page 327

Microsoft Navision Development II − C/SIDE Solution Development

Review Questions ... 183 Creating the Tables and Forms for....................74
Use Cases... 164 Functional Requirements9

Requirements Seminar Registration (Form).....71, 117, 167, 246
Seminar Registration Buffer (Table)................298 Functional.. 9

Other ... 10 Seminar Registration Form (Form)..................212
Retrieving a Record .. 21 Seminar Registration Header (Table)...............73,
Review Questions ... 167, 213

For Story 1–Managing Master Files.................. 52 Seminar Registration Line (Table).............73, 213
For Story 2–Managing Registrations 91 Seminar Registration List (Form)73, 117, 246
For Story 3–Managing Posting 141 Seminar Registration Posting
For Story 4–Managing Integration 156 Creating the Document

 Posting Codeunits for132 For Story 5−Managing Reporting 183
For Story 6−Managing Statistics..................... 195 Creating the Seminar Journal Posting

 Codeunits and Form for................................123 For Story 7−Managing Dimensions 235
For Story 8−Managing Interfaces 254 Creating the Tables and Forms for..................119

Rooms Seminar Registration Posting,
 Use Case 2–Managing.................................111 Adding Code for .. 35

Creating Tables and Forms for 32 Analysis ...111
Rooms, Use Case 2–Managing........................ 30 Design ...112

Seminar Registration Subform (Form)71, 212 Analysis... 30
Design ... 31 Seminar Registration-Printed (Codeunit)168
Development & Testing..................................... 32 Seminar Registrations

Rules... 4 Adding Code for Line Table and Form87
Runtime Errors.. 107 Adding Code to the Header Table and Form82

Handling .. 109 Seminar Registrations,
 Use Case 1−Managing67 Seminar (Table) .. 44, 45

Seminar Card (Form)................ 43, 148, 190, 291 Analysis ...67
Seminar Charge (Table) 73 Design ...69
Seminar Charges (Form) 71 Seminar Registrations,

 Use Case 1–Managing Seminar Charges, Adding Code for.................. 80
Seminar Comment Line (Table)........................ 74 Development & Testing73, 89

Seminar Report Selection (Form)....................166 Seminar Comment List (Form) 70
Seminar Report Selections (Table)167 Seminar Comment Sheet (Form)...................... 70
Seminar Room Card (Form)..............................31 Seminar Document-Print (Codeunit)............... 172
Seminar Room List (Form)........................32, 293 Seminar Feature Integration,

 Use Case 1–Managing 147 Seminar Setup (Form).......................................43
Seminar Setup (Table)44, 45 Analysis... 147
Seminar Statistics (Form)................................190 Design ... 147

Seminar Jnl.-Check Line (Codeunit) 124, 125, Seminar Translations (Form)...........................291
... 225, 226, 227, 228 Seminar Translations (Table)292
Seminar Jnl.-Post Line (Codeunit) . 125, 133, 136, SeminarMail (Codeunit)...................................247
... 225, 227, 230 Seminar-Post (Codeunit).........................132, 228
Seminar Journal Line (Table) 118, 225 Seminar-Post (Yes/No) (Codeunit)..........138, 139
Seminar Ledger Entries (Form) 113, 153, 225 Seminars
Seminar Ledger Entry (Table) 118 Creating the Tables and Rooms for44
Seminar List (Form) 44, 148, 191, 291, 293 Creating the Tables and Rooms for292
Seminar Menu (Form)..................... 149, 166, 251 Functional Requirements9

Seminars, Use Case 5–Managing.....................41 Seminar Planning
Analysis ...41 Adding Code to the ... 300
Design ...42 Creating the Form for...................................... 299
Development & Testing44 Seminar Planning Form (Form) 297

SETCURRENTKEY, Using the Function...........22 Seminar Planning Overview,
 Use Case 2−Managing SETFILTER, Using the Function.......................22

SETRANGE, Using the Function.......................22 Analysis... 295
SHOWOUTPUT,
 Using the CurrReport Function.....................162

Design ... 296
Seminar Reg.-Part. Certificate (Report).......... 175

SKIP, Using the CurrReport Function162 Seminar Reg.-Participant List (Report) 168
Source Code Setup (Form)113, 119 Seminar Register (Table)................................ 118
Source Code Setup (Table).....................118, 119 Seminar Registers (Form) 114
SQL Server Seminar Registration

Page 328

Index

Table Relations on Microsoft SQL Server.........25
Statistics

Creating the Form for Seminar........................192
Functional Requirements10
Story 6−Managing

Diagnosis ...188
Use Cases ...188

Statistics, Story 6−Managing
Review Questions ...195

Statistics, Use Case 2−Managing Seminar
Analysis ...189
Design ...190

Steering Committee Approval258
Structure, Course..2
Support Phase ..4
Syntax Errors ..107
Table Locking..105
Table Relations on Microsoft SQL Server.........25
TableBox Control ..60
TABLECAPTION Function................................59
Temporary Tables...63
Text Files, Exporting Objects as57
Text Messages,
 Using Multilanguage Functionality in58
TOTALSCAUSEDBY,
 Using the CurrReport Function162
Transaction Documents, Importing259
Triggers

Codeunit
Documentation...19
OnRun..19

Codeunit ..19
Dataport...260

OnAfterExportRecord260
OnAfterImportRecord...................................260
OnBeforeExportRecord260
OnInitDataPort ...260
OnPostDataItem ..260
OnPostDataport ...260
OnPreDataport...260

Documentation17, 18, 19, 104
Documentation ..322
Form

OnActivateForm...19
OnAfterGetCurrRecord19
OnAfterGetRecord ...19
OnBeforePutRecord19
OnCloseForm...19
OnDeactivateForm...19
OnDeleteRecord ..19
OnFindRecord..19
OnInit ...19
OnInsertRecord..19
OnModifyRecord..19
OnOpenForm...19

Report..161
Table Event ...18, 240

OnDelete..18, 240

OnInsert... 18, 240
OnModify ... 18, 240
OnRename .. 18

Table Field Event
OnLookup.. 19
OnValidate... 19

Triggers, Event ... 17
UPDATE, Using the CurrForm Function........... 64
UPDATEEDITABLE, Using the Function.......... 65
Use Cases

For Story 1–Managing Master Files.................. 26
For Story 2–Managing Registrations 66, 295
For Story 3–Managing Posting 110
For Story 4–Managing Integration 146
For Story 5−Managing Reporting 164
For Story 6−Managing Statistics 188
For Story 7−Managing Dimensions 203
For Story 8−Managing Interfaces 244

VALIDATE, Using the Function 24
Virtual Tables.. 61
VISIBLE, Using the Function............................ 65
What You Need to Know About

Automation Server, Using an.......................... 239
Check Line Codeunit .. 97
Complex Data Types .. 20
Debugging Tools... 107
Defining a Record Set....................................... 22
Document Posting Routines 101
Documentation in Existing Objects 104
Event Triggers... 17
Exporting Objects as Text Files 57
FlowFilters, Using ... 187
Importing Document and Ledger Data............ 259
Journal and Ledger Entry Tables...................... 95
Matrix Forms... 60
Multilanguage Functionality in Objects 24
Multilanguage Functionality in Text Messages. 58
Performance Issues.. 105
Post Batch Codeunit ... 98
Post Line Codeunit ... 97
Posting Routines... 96
Processing-only Reports................................. 163
Record Data Type... 20
Report Functions .. 162
Report Triggers ... 161
Retrieving a Record .. 21
Table Event Triggers .. 18
Table Locking.. 105
temporary tables ... 63
Virtual Tables .. 61

XML Participant List,
 Use Case 2−Managing................................ 250

Analysis... 250
Design... 251
Development & Testing 252

XML Sem. Reg.-
 Participant List (Report)............... 252, 309, 310

Page 329

Microsoft Navision Development II − C/SIDE Solution Development

Page 330

