
Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 Version Number: 20060310

Oxlo OnRamp™

Installation and Developers Guide

Copyright © 2004-2007, Oxlo Systems Inc.
 All rights reserved

Oxlo Systems Inc.
11001 West 120th Avenue, Suite 300

Broomfield, CO 80021
720-890-7545

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 2 of 55 Version Number: 20061020

Table of Contents

1 Section I—Oxlo OnRamp Installation Guide4

2 Overview..5
2.1 Supported Platforms .. 5

3 What is OnRamp? ..6

4 OnRamp Deployment Topologies ..8
4.1 Server Based Communications .. 8
4.2 Designated Communications Computer ... 8

5 Installation and Key Components ..9
5.1 OnRamp Installation Procedures .. 9

7 Upgrading OnRamp (version 1.3x_1.3x to 2.0x_2.0x)................12
7.1 Windows ... 12
7.2 Unix ... 12

8 Configuration ..13
8.1 onrampd.cfg... 13
8.2 userMessageMap.cfg ... 13

9 Section II—Oxlo Developers Guide14

10 Key Concepts..15
10.1 Sessions ... 15
10.2 SenderIDs.. 15
10.3 Application IDs ... 15
10.4 InBoxes... 16
10.5 Document Types and Versions ... 17
10.6 Response Handling.. 17

11 Simple Communications Module ...18
11.1 Sending Messages .. 18
11.2 Receiving Messages .. 19

12 Correlated Messaging ...20

13 Application Programming Interface22
13.1 Overview ... 22

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 3 of 55 Version Number: 20061020

13.2 Oxlo Data Structures .. 22
13.3 List of Methods ... 22
13.4 liboxloVersion .. 27
13.5 onrampdVersion ... 27
13.6 setSenderId (session, inSessionId) ... 27
13.7 setApplicationId(session, inAppId).. 28
13.8 setDocVersion (session, inDocVersion).. 28

14 Appendix A – Code Samples ..34
14.1 C Sample Code ... 34
14.2 C# Sample Code (OCX Implemetation) ... 41
14.3 Visual Basic 6 Sample Code (OCX Implementation) 49
Trademarks ... 54

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 4 of 55 Version Number: 20061020

1 Section I—Oxlo OnRamp Installation Guide

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 5 of 55 Version Number: 20061020

2 Overview
This document provides an overview of Oxlo OnRamp™, Oxlo’s DSP communications package. It provides
descriptions of what OnRamp is, how it works, what it provides and what a DSP must do to implement OnRamp.
The target audiences for this document are technical staff and management of Oxlo’s DSP Partners.

2.1 Supported Platforms
OnRamp is tested and certified on the following platforms:

• Windows® Server 2003™
• Windows® XP™
• Windows® 2000™
• Windows® NT™ Server 4.0
• SCO Open Server ™ v5.0.5-5.0.7
• SCO Open Server™ v6.0.0
• Linux® RedHat 3.0
• Linux® RedHat 4.0
• Mandrake 9.1,9.2
• Mandrake 10.0-10.2
• Mandriva 2006
• Java

Additionally, Oxlo will certify and support OnRamp on these additional platforms, based on client needs, such
as:

• Linux® (Debian, Redhat, Mandrake, etc.)
• Mixed systems (e.g. mixing Windows and Linux/Unix platforms)

Please contact your Oxlo account manager directly regarding certification and support for these additional
platforms.

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 6 of 55 Version Number: 20061020

3 What is OnRamp?
Oxlo provides Dealer Systems Providers (DSPs) with a package for communicating between their applications
and Oxlo. This package, called OnRamp, is provided to DSP partners for the purposes of accelerating and
standardizing communications with Oxlo. Oxlo, in turn, implements the disparate and unique communications
protocols required by Dealer Business Partners such as OEMs and Lenders (DBPs). OnRamp need only be
implemented a single time to gain access to all DBPs connected to the Oxlo Automotive Retail Network, thus
eliminating costly development and maintenance of multiple communications protocols.

The following picture illustrates the high-level components of OnRamp and their relationship to dealer systems.

OnRamp is a simple, secure, reliable, multi-platform communications product, consisting of a set of software
libraries and executables that provide a single, consistent API. OnRamp is “Firewall Friendly,” being designed
to live behind firewalls, and does not require any special networking setup such as static IP addresses or active
listeners.

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 7 of 55 Version Number: 20061020

OnRamp implements a secure and reliable messaging protocol that includes the following features:

• Duplicate message detection and elimination
• Non-repudiation—so that it can be verified that the sender and the recipient were, in fact, the parties

who send or receive a message
• Audit Trail tracking of every message
• Active monitoring of connectivity with integrated systems
• Synchronous/Asynchronous two-way communications
• Automatic payload compression and decompression
• Firewall friendly capabilities—so that communications are only initiated on a request/response basis

from dealer systems
• Auto-update and remote management
• User friendly status messages

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 8 of 55 Version Number: 20061020

4 OnRamp Deployment Topologies

4.1 Server Based Communications
In a server-based deployment model, the OnRamp server components will be installed on the main application
server and the OnRamp client components will be installed on other computers wishing to use the
communications channel.

4.2 Designated Communications Computer
In environments without a centralized server, any machine on the network may be used as the communications
server for OnRamp, including a machine that is also used as a client PC. The chosen communications machine
will have both OnRamp server components and OnRamp client components installed on it, and the other
machines on the network will have OnRamp client components installed on them.

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 9 of 55 Version Number: 20061020

5 Installation and Key Components

OnRamp is composed of 2 components, liboxlo and onrampd, that must be installed. The Windows platform
also has additional API wrappers such as the ActiveX control and java wrapper.

An OnRamp installation can be classified as either an OnRamp client or an OnRamp server. An OnRamp
Server is the computer in your deployment that will send and receive all messages to and from the Oxlo central
communications hub. Any system that accesses OnRamp functionality via calls to the liboxlo API is classified
as a client. This is typically a DMS, F&I or CRM system. These can be installed on the same machine if it is to
serve both uses. OnRamp components are intended to be bundled with the DSP’s software and installed as
part of the DSP’s install/upgrade process.

5.1 OnRamp Installation Procedures

OnRamp components are installed in a single directory for both Unix and Windows installations. The following
steps will guide you through the OnRamp installation.

5.1.1 Windows
OnRamp Server Installation - Complete these steps only on systems designated as an OnRamp
communications server.

• First unzip OnRamp2xx_2xx to a single directory (for example C:\OnRamp)
• Open a command-line window (start button -> run – cmd.exe)
• Change working directory (cd) to the directory where you extracted the OnRamp files
• Execute “onrampd.exe –i” - The command should return “Service installed successfully.” If this is not the

response, contact Oxlo Technical support for assistance in troubleshooting.
• Open the Windows Service Control Manager by choosing Start/Run and entering the command

“services.msc /s”
• The newly installed service will be listed as “Oxlo OnRamp Service”. Locate the service in the list of

services, select the service, right-click and choose Properties.
• Set the Startup Type for the service to be Automatic.
• Close the Properties window to apply the setting.
• Setup configuration files

o Copy the onrampd.cfg provided to you by Oxlo Systems into C:\OnRamp
o Change the value of the ‘OnRampId’ line to the OnRamp id provided to you by Oxlo Systems.

An OnRampId identifies a unique installation of OnRamp. Note: all further updates to
onrampd.cfg are managed centrally by Oxlo and should not be configured by hand.

o Copy the dspname.p12 provided to you by Oxlo Systems into C:\OnRamp
• Start the OnRamp service from the Windows Service Control Manager

Client (liboxlo) Installation - Complete these steps on all systems that will access libolxo. This may include
the communications server.

• First unzip OnRamp2xx_2xx to a single directory (for example C:\OnRamp)
• Register the OnRamp ActiveX control

o Open a command-line window (start button -> run – cmd.exe)
o Change working directory (cd) to the directory where where you extracted the OnRamp files
o Execute “regsvr32 OnRampActiveX.ocx” – The command should return “DllRegisterServer in

OnRampActiveX.ocx succeeded.” If this is not the response, contact Oxlo Technical support for
assistance in troubleshooting.

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 10 of 55 Version Number: 20061020

• Update system PATH environment variable - This step updates the PATH environment variable so that

applications can locate liboxlo.dll without having to copy it to multiple locations on the file system.
o Open the “System Properties” dialog box

(Start button->Control Panel->System)
o Select the “Advanced” tab
o Click on the “Environment Variables” button at the bottom
o Select “Path” in the “System variables” pane
o Click the “Edit” button
o Edit the “variable value” by adding “C:\OnRamp;” (or your specific installation location) to the

beginning of the string. (note the ‘ ; ‘ at the end of C:\OnRamp;)
o Click OK on to apply changes

• Set “onrampd-location” environment variable. This environment variable identifies the server location where
your OnRamp service is running.

o Open the “System Properties” dialog box
(Start button->Control Panel->System)

o Select the “Advanced” tab
o Click on the “Environment Variables” button at the bottom
o Click on “New” at the bottom under “System Variables”
o Variable name = “onrampd-location” (this is case sensitive, do not include the quotes)
o Variable value = Servername or IP address for your OnRamp server e.g. “localhost”

5.1.2 Linux/Unix
Note: SCO OSR 504, 505 and 506 must have prngd installed for OnRamp to work properly. OSR 507 and 6.0
have a random number generator installed by default.

6 Download the random number generator from SCO/Caldera utilizing ftp and the following URL:

ftp://ftp2.caldera.com/pub/skunkware/osr5/vols/prngd-0.9.23-VOLS.tar
• Untar the package to a temp directory
• Run the program “custom”, choose ‘Software’, ‘Install New’, ‘From Host’ at the prompts.
• Select ‘Media Image’ as your Media Device.
• Type in the path to the temp directory where you untarred the package.
• Select ‘prngd’ as the software to install
• To start prngd, use the following command line:

“/usr/local/sbin/prngd /var/run/egd-pool”
• You can verify that the random number generator is started by finding it in the process list:

"ps -ef | grep prngd"
• OnRamp looks for the random number generator at one of the following locations:

/var/run/egd-pool, /dev/egd-pool, or /etc/egd-pool

OnRamp Server Installation - Complete these steps only on systems designated as an OnRamp
communications server
• extract the OnRamp2xx_2xx.tar file into /opt dir (creates /opt/OnRamp directory)

o su or login as root
o cd /opt
o tar xvf <full-path-to-OnRamp2xx_2xx.tar>

• setup symbolic link for liboxlo.so to liboxlo.so.2.0x.0 (ln -s liboxlo.so.2.0x.0 liboxlo.so)
• setup LD_LIBRARY_PATH to include directory of liboxlo.so link -this allows your application to find the

liboxlo.so library without maintaining multiple copies of the library
• Add the following lines to .bashrc or .profile for user that the calling (DSP) application runs as

"export LD_LIBRARY_PATH=/opt/OnRamp:$LD_LIBRARY_PATH"

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 11 of 55 Version Number: 20061020

• Setup configuration files
o Copy the onrampd.cfg provided to you by Oxlo Systems into /opt/OnRamp
o Change the value of the ‘OnRampId’ line to the OnRamp id provided to you by Oxlo Systems.

Systems. Note: all further updates to onrampd.cfg are managed centrally by Oxlo and
should not be configured by hand.

o Copy the dspname.p12 provided to you by Oxlo Systems into /opt/OnRamp
• start onrampd with ./onrampd as a user that can daemonize, open accept and outgoing sockets

Client (liboxlo) Installation - Complete these steps on all systems that will access libolxo. This may include
the communications server.
• extract the OnRamp2xx_2xx.tar file into /opt dir (creates /opt/OnRamp directory)

o su or login as root
o cd /opt
o tar xvf <full-path-to-OnRamp2xx_2xx.tar>

• setup symbolic link for liboxlo.so to liboxlo.so.2.0x.0 (ln -s liboxlo.so.2.0x.0 liboxlo.so)
• setup LD_LIBRARY_PATH to include directory of liboxlo.so link -this allows your application to find the

liboxlo.so library without maintaining multiple copies of the library
• Add the following lines to .bashrc or .profile for user that the calling (DSP) application runs as

o “export LD_LIBRARY_PATH=/opt/OnRamp:$LD_LIBRARY_PATH"
o “export onrampd_location= Servername or IP address for your OnRamp server e.g. “export

onrampd_location=localhost”

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 12 of 55 Version Number: 20061020

7 Upgrading OnRamp (version 1.3x_1.3x to 2.0x_2.0x)

Upgrading the OnRamp from version 1xx to 2xx is a simple process. All OnRamp 2.0 files live in a single
directory (ie c:\OnRamp or /opt/OnRamp). This file structure eliminates multiple library versions and other
inaccuracies in deployment. This is a one time change to an existing OnRamp 1.x deployment.
Note: Before beginning an upgrade please provide Oxlo systems with a copy your current octd.cfg file. For
development/integration installations please contact your Integration Services Consultant. For production
installs please contact Oxlo Operations (877.463.1965).

7.1 Windows
• Deregister the service

o Shutdown the octd service
o Open a command-line window (start button -> run – cmd.exe)
o Change working directory (cd) to the directory where octd.exe is located
o Execute “octd.exe –d”

• Deregister the activeX control if you have installed and registered it in the past.
o Stop all applications using the Oct Active X control.
o Open a command-line window (start button -> run – cmd.exe)
o Change working directory (cd) to the directory where OCT_ActiveX.ocx is located.
o Execute “regsvr32 /u OCT_ActiveX.ocx”

• Remove PATH entry for liboxlo.dll
• Remove all instances of liboxlo.dll, octd.exe, and OCT_ActiveX.ocx, testPing.exe, testMenu.exe,

liboxlo.cfg and octd.cfg.
• Follow the OnRamp 2.0 install instructions.

7.2 Unix
• Stop the octd daemon
• Remove LD_LIBRARY_PATH entry for liboxlo.so location
• Remove all instances of octd , liboxlo.so/liboxlo.so.1.32.0, liboxlo.cfg and octd.cfg.
• Follow the OnRamp 2.0 install instructions.

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 13 of 55 Version Number: 20061020

8 Configuration
OnRamp is controlled by a set of configuration files that specify settings for OnRamp to function. While the
configuration files are simple text files, the information should not be edited by hand. Oxlo will supply a set of
configuration files to its partners. The configuration files are managed by Oxlo Systems and will automatically
be updated upon starting onrampd.

OnRamp utilizes two specific configuration files:

8.1 onrampd.cfg
The onrampd.cfg file is used to set parameters for OnRamp operation. Most settings in the onrampd.cfg file are
not meant to be edited by partners. Oxlo systems will distribute an OnRampId to partners for every unique
installation of OnRamp. This is the only parameter that should be edited by hand. All other updates to
onrampd.cfg are managed remotely by Oxlo Support.

8.2 userMessageMap.cfg
The userMessageMap.cfg file contains end-user friendly error messages that can be customized to a particular
installation. By implementing a simple error reporting mechanism, a DSP can provide comprehensive error
messages to its users that can be tailored to be specific to the screens or activities that the end-user is
interacting with as part of communications. This file is not editable and it automatically updated with parameters
managed by Oxlo Support.

8.3 Auto Update of Onramp Configuration
As described above configuration files are managed centrally by Oxlo Support and are auto
updated at the dealer site. Additionally OnRamp auto update allows Oxlo support to push
software updates to OnRamp. Please note that this auto update functionality only allows Oxlo to
update OnRamp files and poses no risk to other applications on the host system.

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 14 of 55 Version Number: 20061020

9 Section II—Oxlo Developers Guide

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 15 of 55 Version Number: 20061020

10 Key Concepts
To implement a communications module using OnRamp, several key concepts should be understood. These
concepts are:

• Sessions
• Sender IDs
• Application IDs
• InBoxes
• Document Types
• Document Versions
• Response Handling

The following paragraphs cover these important concepts.

10.1 Sessions
Sessions are used by OnRamp to manage memory via a single construct. Sessions are designed to be “single-
use”, that is a session is created, used and destroyed for each individual message being sent or received.
Sessions contain dynamic memory that is allocated specifically for a messaging transaction, and once that
transaction is finished, the memory should be freed to prevent errors from subsequent inadvertent use.
Additionally, Sessions contains state and parameter information about a particular messaging transaction that
should be disposed of when that transaction is completed.

The API functions that relate to initializing and cleaning up sessions are the following (see the API reference for
a complete list of parameters):
createSession()
destroySession()

note: The OXLO_SESSION structure that is passed in to these two functions should be allocated from the
hosting software’s memory management. The structure itself is NOT allocated/created by the createSession
function.

10.2 SenderIDs
Sender IDs play 2 important roles in OnRamp (and subsequently in Oxlo’s hosted service environment): they
identify who originated a message (so that specific validation and data completion rules can be applied) and
they form half of the 2-part key that identifies an InBox (see section 10.4). Oxlo will assign a unique Sender ID
for each installation of OnRamp, typically one per dealer. Oxlo will also assign a SenderID specifically for its
partners that should be used during development and testing. Note that Sender ID’s are critical for correct
functioning of OnRamp and Oxlo’s hosted service environment, therefore only SenderID’s that Oxlo has
assigned should be used.

When communications code is running, the SenderID should be set programmatically per session using the API
function setSenderID().

10.3 Application IDs
Application IDs are the second part of a 2-part key (the other being the Sender ID) that OnRamp and Oxlo’s
hosted service environment use to manage, route and identify messages flowing through the system.
Specifically, business rules, InBoxes, and other configuration information rely on correct Sender IDs and
Application IDs. While Sender IDs typically identify a single dealer, Application IDs are used to identify the
individual application or functional module that is effecting the communications. The following picture illustrates
this:

Comment [GG1]: Are we
referring to the OS here? Is this
more info then our partners need
or will understand

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 16 of 55 Version Number: 20061020

This diagram portrays a hypothetical dealer that utilizes a DMS application from vendor ABC Systems that has 6
different application modules. The different modules of the DMS application all use specific Application IDs that
refer to their functional area, but the same Sender ID (assigned to the dealer). Messages being sent by the
various modules will be received by Oxlo’s hosted service environment and processed according to their
destination (VW, GM, RouteOne, etc.) Messages received from Dealer Business Partners (DBPs) such as Ford,
GM, RouteOne, etc., will be routed to the InBox and indexed based on the Sender ID and Application ID. For
example, Acknowledge Parts Order messages received from a DBP will be routed to the InBox and indexed by
123456/ABC_VW_APO, while Credit Decisions received from a financing source will be routed to the InBox and
indexed by 123456/ABC_RO_PCD. As a result of using multiple Application IDs, the various modules of the
DMS application can effectively filter out messages that they don’t care about (e.g. the Parts module won’t have
to worry about Credit Decision messages).

Application IDs will be assigned during the integration process. Your integration consultant will provide you
with the specific application IDs required for your integration project.

10.4 InBoxes
As the previous 2 sections have indicated, messages received from DBPs are processed by Oxlo’s hosted
service environment and placed into the InBox indexed by the combination of SenderID and ApplicationID.
When checking for or retrieving messages, OnRamp must be told the SenderID and ApplicationID to correctly
identify the messages in question. OnRamp identifies messages by Message IDs that are returned from the API
call getMessageIds. To retrieve a message, a valid Message ID must be provided to either the
getMessageAsBuffer or getMessageAsFile function.

Oxlo’s hosted service environment is always ready to receive messages from DBPs and place them into the
InBox. Each message received is assigned a unique message ID. To manage the messages in the InBox, DSP
applications should “delete” messages when they are finished processing the message. Deleting a message

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 17 of 55 Version Number: 20061020

will prevent that message id from being returned by subsequent calls to getMessageIds. If a message is not
deleted, then subsequent calls to getMessageIds will include that message id in the returned list.

10.5 Document Types and Versions
When sending messages via OnRamp, both the type of the message (the document type) and the version of the
message must be specified. The document version is set programmatically per session using the API function
setDocVersion(). The document type can only be set programmatically as part of a sendFile() or sendBuffer()
call.

10.6 Response Handling
OnRamp provides a set of calls to provide detailed response messages and support the automation of response
and error handling. All function calls of OnRamp utilize a simple return code that can be used programmatically
to determine whether an error has occurred. Non-zero return values indicate an error condition (See the
OnRamp API guide for a complete list of error codes). In the event that an error has occurred, additional
functions can be utilized to get more information (see the OnRamp API guide for a complete listing of the
parameters for each of these calls):

• getResponseCode – This function returns the HTTP code from the last HTTP request. Typical return
values will be 200, 404, 500, etc. Note that this function can be called whether an error has occurred or
not. This response code should not be used to determine whether or not the last operation succeeded
or failed.

• getResponseReason – This function returns a pointer to the message string associated with the HTTP
response. Typically this message will be “OK” for successful requests, or will contain error text
corresponding to the actual error. Note that OnRamp has allocated memory to hold the response
reason, and that once the current session is deleted, the memory will be freed. Applications wishing to
use the response reason should copy it to their own memory space to avoid programmatic failures.

• getResponseData – This function returns the body of the last session’s response. The body will only
contain data if the specific function call must return data to the caller (for example, getMessageIDs and
getMessageAsBuffer). Note that OnRamp has allocated memory to hold the response message, and
that once the current session is deleted, the memory will be freed. Applications wishing to use the
Response Data should copy it to their own memory space to avoid programmatic failures.

• getUserMessage – This function returns a “user-friendly” version of an error response. OnRamp utilizes
response reason as a key to look up the user friendly message in the userMessageMap.cfg file.

Comment [GG2]: Updates around
this for correlated message

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 18 of 55 Version Number: 20061020

11 Simple Communications Module
Implementing a simple OnRamp communications module will consist of writing code to support two basic
functions:

• Sending messages
• Receiving messages

The following diagram illustrates the architecture of a basic communications module:

11.1 Sending Messages

11.1.1 SendMessage Description
The structure of the SendMessage function encapsulates all the management necessary to create and destroy
an Oxlo Session, set the correct parameters for message transmission, send the message and handle the
corresponding response.

The parameters passed to the function are as follows:

• SenderID
• ApplicationID
• DocVersion
• DocType
• DestinationID
• MessageFile/Buffer

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 19 of 55 Version Number: 20061020

High level flow of SendMessage implementation is as follows:
• Create session

o If session creation fails log/display an error message
o If successful move on to set parameters

• Set session parameters
o SenderId
o ApplicationId
o DocVersion

• Call SendFile/SendBuffer with required parameters; MessageFile/Buffer, DestinationId, DocType
o If SendFile response is success (function return = 0) log/show success
o If SendFile response is not success (function returns ≠ 0) log response and handle

appropriately
 If -20 GetUserMessage and display to end user (if an end user is waiting on

transaction) or
 Implement retry logic or
 Escalate

• Destroy session

As the above example shows, sending messages involves establishing a session, setting session variables,
invoking a method to send the message, and then destroying the session. The OxloSession object is used to
hold buffers and other information about a single message transaction, so it should be destroyed after a single
use. Please see Appendix A for SendMessage sample code.

11.2 Receiving Messages

11.2.1 ProcessInboxMessages Description
The structure of the ProcessInboxMessages function encapsulates all the management necessary to create and
destroy an Oxlo Session, set appropriate session parameters, check whether any message are waiting for
download, if message(s) are waiting download the corresponding payloads and delete them from the InBox.

The parameters passed to the function are as follows:

• SenderID
• ApplicationID

High level flow of ProcessInboxMessages implementation is as follows
• Create session1

o If session creation fails log/display an error message
o If successful move on to set parameters

• Set session parameters
o SenderId
o ApplicationId

• Call getMessageIds with session1
o If getMessageIds response is success (function return = 0) log/show success

 For each id returned from getMessageIds
 Create session2
 Call getMessageAsBuffer or getMessageAsFile

• If getMessageAsBuffer/getMessageAsFile succeeded (function return = 0) then

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 20 of 55 Version Number: 20061020

o process payload (retrieved using getResponseData())
 Determine the payload type(s) retrieved
 Save the payload as the appropriate file type and pass to the

calling application for processing
o delete message from inbox

 Create session3
 Set session parameters

• SenderId
• ApplicationId

 Call deleteMessage with messageId to delete
• If deleteMessage succeeded (function return = 0)

log/show success
• If deleteMessage failed (function return ≠ 0) then log

error
 Destory session 3

• If getMessageAsBuffer/getMessageAsFile failed (function returns ≠ 0) then log
error

 Destroy session2
o If getMessageIds response is not success (function returns ≠ 0) log response and handle

appropriately
 user is waiting on transaction or
 Implement retry logic or
 Escalate

• Destroy session1

As the above example shows, receiving messages involves establishing a session, setting session variables,
invoking a method to identify messages available for retrieval, processing the available messages and deleting
them from the inbox. The OxloSession object is used to hold buffers and other information about a single
message transaction, so it should be destroyed after a single use. Please note how in the above example a
session is created and destroyed for every call to OnRamp within the function. Please see Appendix A for
ProcessInboxMessages sample code.

12 Correlated Messaging
For some business processes the simple messaging implementation described above is not appropriate. In the
simple messaging model sending and receiving messages for a given business process are either independent
of one another or loosely coupled. For example a parts order message may be sent and a corresponding parts
shipment notification may be received at no specified time interval and with no direct correlation token. A
correlation token is usually a simple element such as a message or conversation identifier that exists in all
related messages for a given business process. In a correlated business messaging scenario for each
message sent the system will expect a specific return message/messages, usually within a specified time frame,
that reference the correlation token of the original message. A common example here is the Chrylser Financial
AutoOrigination system. In this case an AOInput or ProcessCreditContract message is sent to Chrylser from the
dealer system. The dealer system will always receive either a ConfirmBOD or AcknoweldgeCreditContract
response that references the original messageId created on transmission. For scenarios like this Oxlo has
created a method for the DSP system to handle the more complex model of correlated messaging.

Comment [GG3]: Add verbiage
here around correlated
messaging, give example

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 21 of 55 Version Number: 20061020

12.1.1 SendCorrelatedMessage Decsription
High level flow of SendACorrelatedMessage implementation is as follows:

• Create session
o If session creation fails log/display an error message
o If successful move on to set parameters

• Set session parameters
o SenderId
o ApplicationId
o DocVersion

• Call SendCorrelatedMessageAsFile/Buffer with required parameters; MessageFile/Buffer, DestinationId,
DocType

o If SendFile response is success (function return = 0)
 SaveSessionResponseData as file/buffer; this contains the returned, correlated mesage

o If SendFile response is not success (function returns ≠ 0) log response and handle
appropriately

 If -20 GetUserMessage and display to end user (if an end user is waiting on
transaction) or

 Implement retry logic or
 Escalate

• Destroy session

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 22 of 55 Version Number: 20061020

13 Application Programming Interface
This section describes in additional detail the Application Programming Interface of the Oxlo Communications
Toolkit known as OnRamp. The OnRamp package consists of a linkable library that provides communications
functionality, a Windows Service (or a Unix daemon) that utilizes the library to provide heartbeat and audit
capabilities, sample source code and documentation. The purpose of OnRamp is to minimize the amount of
time a DSP will need to invest to communicate between their application and the Oxlo’s hosted service
environment. By using OnRamp, developers at a DSP will be able to invoke simple API calls without regard to
communications protocols, header formats, auditing and management. Should the implementation of OnRamp
change in the future, the API will be preserved so that DSP’s will not need to adapt their code to changing
communications protocols

13.1 Overview
The DLL’s expose several C methods that allow the user of the DLL to test connectivity, send documents (both
from a buffer as well as from a file) to an Oxlo hosted service environment.

13.2 Oxlo Data Structures
• OXLO_SESSION – This is a data structure that contains session and state information. It is initialized,

maintained and used by the OnRamp methods to eliminate the need for external memory management
for submitted data and/or results. No client applications need manipulate or manage any of the
information within this data structure.

13.3 List of Methods
The following methods are the complete public interface to Oxlo OnRamp™. The methods can be divided into 5
sections:

• Session Management
• Accessors for HTTP response information
• Utility functions
• Administrative functions
• Message sending functions

/* create and destroy Oxlo sessions to simplify *
** memory management of connections and result data */
• int createSession(OXLO_SESSION *);
• void destroySession(OXLO_SESSION * session);

/* accessors for http response code, data and reason */
• unsigned getResponseCode(OXLO_SESSION * session);
• unsigned char * getResponseData(OXLO_SESSION * session);
• unsigned char * getResponseReason(OXLO_SESSION * session);
• unsigned char * getUserMessage(OXLO_SESSION * session);
• char * getMessageId(OXLO_SESSION * session);

• int sendAuditPing(OXLO_SESSION * session);
• int liboxloVersion(void);
• int octdVersion(void); (deprecated replaced by onRampdVersion)
• int onRampdVersion(void);

/* functions to override default values from configuration */

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 23 of 55 Version Number: 20061020

• void setSenderId(OXLO_SESSION * session, char *inSenderId);
• void setApplicationId(OXLO_SESSION * inSession, char *inAppId);
• void setDocVersion(OXLO_SESSION * session, float inDocVersion);

/* functions to send either a file or a buffer */
• int sendFile(OXLO_SESSION * session, char *fname, char *destId,

 char *docType);
• int sendBuffer(OXLO_SESSION * session, const unsigned char *data,

 const long dataLen, char *destId, char *docType);

/* functions to check, retrieve and delete documents from the Inbox */
• int getMessageIds(OXLO_SESSION * session);
• unsigned long ** getMessageIdArray(OXLO_SESSION * session)
• int getMessageAsBuffer(OXLO_SESSION * session, unsigned long msgId);
• int getMessageAsFile(OXLO_SESSION * session,

 unsigned long msgId, char * filename);
• int deleteMessage(OXLO_SESSION * session, unsigned long msgId);

13.3.1 Error Codes
 0 = ONRAMP_SUCCESS = connectivity is good or operation succeeded
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out
 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request

 0 = ONRAMP_SUCCESS = successfully completed operation
 -1 = ONRAMP_CANNOT_READ_CONFIG = could not read configuration file (liboxlo.cfg)
 -2 = ONRAMP_CANNOT_READ_LICENSE = could not read License from configuration file
 -3 = ONRAMP_CANNOT_READ_SENDERID = could not read DefaultSenderId from
 configuration file
 -4 = ONRAMP_CANNOT_READ_APPID = could not read ApplicationId from
 configuration file
 -5 = ONRAMP_CANNOT_READ_DOCVERSION = could not read DefaultDocVersion from
 configuration file
 -6 = ONRAMP_CANNOT_READ_AUTOBOD_FORMAT = could not read AutoBODFormat from
 configuration file
 -7 = ONRAMP_CANNOT_READ_SCHEME = could not read Scheme from configuration file
 -8 = ONRAMP_CANNOT_READ_HOST = could not read Host from configuration file
 -9 = ONRAMP_CANNOT_READ_PORT = could not read Port from configuration file
-10 = ONRAMP_CANNOT_READ_BOD_URL = could not read BOD-Location from
 configuration file
-11 = ONRAMP_CANNOT_READ_AUDIT_PING_URL = could not read AUDIT-PING-Location
 from configuration file
-12 = ONRAMP_CANNOT_READ_INBOX_URL = could not read INBOX-Location from
 configuration file
-13 = ONRAMP_CANNOT_READ_MSG_DOMAIN = could not read Message-Domain from
 configuration file

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 24 of 55 Version Number: 20061020

-19 = ONRAMP_CANNOT_OPEN_SOCKET_LAYER = could not initialize socket layer
-20 = ONRAMP_REQ_REJECTED = request was rejected
-21 = ONRAMP_REQ_DEFERRED = request was deferred
-22 = ONRAMP_CANNOT_OPEN_FILE = could not open file
-23 = ONRAMP_CANNOT_ATTACH_BODY = could not attach file as body
-24 = ONRAMP_CANNOT_ATTACH_BUFFER = could not attach buffer as body
-25 = ONRAMP_CANNOT_ALLOC_ENOUGH_MEMORY = malloc failure for sending buffer(s)
-26 = ONRAMP_CANNOT_DETERMINE_FILE_SIZE = cannot get file size from file system.
-30 = ONRAMP_ERR_HASH_FAILED = could not generate hash value of file
-90 = ONRAMP_UNABLE_TO_FIND_ONRAMPD = unable to connect to onrampd
-91 = ONRAMP_UNABLE_TO_AUTH_ONRAMPD = unable to authenticate with onrampd
-92 = ONRAMP_IPC_SEND_ERROR = unable to send request to onrampd
-93 = ONRAMP_IPC_RCV_ERROR = unable to process response from onrampd
-94 = ONRAMP_NOT_ENOUGH_INFO_TO_PROCESS = unable to process request
 not enough info to complete processing
-95 = ONRAMP_INVALID_SESSION
-98 = ONRAMP_CERTIFICATE_DECRYPT_FAILED = certificate decryption failed
-99 = ONRAMP_CERTIFICATE_COULD_NOT_ATTACH = could not attach client certificate
-100 = ONRAMP_LICENSE_INVALID = license invalid

13.3.2 Session Management

13.3.3 createSession
The createSesion function is called to begin a connection session to the Oxlo hosted service environment.
Upon success a pointer is returned to an OXLO_SESSION structure. This structure maintains the state,
session data, response code and response data. Always call destroySession before exiting to clean up any
allocated memory or connections.
Return values:

 0 = ONRAMP_SUCCESS = successfully created an oxlo session
-1 = ONRAMP_CANNOT_READ_CONFIG = could not read configuration file
 (liboxlo.cfg)
-2 = ONRAMP_CANNOT_READ_LICENSE = could not read License from
 configuration file
-3 = ONRAMP_CANNOT_READ_SENDERID = could not read DefaultSenderId from
 configuration file
-4 = ONRAMP_CANNOT_READ_APPID = could not read ApplicationId from
 configuration file
-5 = ONRAMP_CANNOT_READ_DOCVERSION = could not read DefaultDocVersion from
 configuration file
-6 = ONRAMP_CANNOT_READ_AUTOBOD_FORMAT = could not read AutoBODFormat from
 configuration file
-7 = ONRAMP_CANNOT_READ_SCHEME = could not read Scheme from configuration
 file
-8 = ONRAMP_CANNOT_READ_HOST = could not read Host from configuration file
-9 = ONRAMP_CANNOT_READ_PORT = could not read Port from configuration file
-10 = ONRAMP_CANNOT_READ_BOD_URL = could not read BOD-Location from
 configuration file
-11 = ONRAMP_CANNOT_READ_AUDIT_PING_URL = could not read
 AUDIT-PING-Location from configuration file
-12 = ONRAMP_CANNOT_READ_INBOX_URL = could not read INBOX-Location from
 configuration file

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 25 of 55 Version Number: 20061020

-13 = ONRAMP_CANNOT_READ_MSG_DOMAIN = could not read Message-Domain from
 configuration file
-19 = ONRAMP_CANNOT_OPEN_SOCKET_LAYER = could not initialize socket layer

int createSession(OXLO_SESSION *);

13.3.4 destroySession
The destroySession function takes a pointer to an OXLO_SESSION structure. destroySession closes the
connection and frees all of the allocated resources associated with this session including response data,
response codes and session resources.

Important: This releases the response data. The response data must have been copied to a local
memory before you destroy the session if you need to process the response further.

void destroySession(OXLO_SESSION * session);

13.3.5 HTTP Responses

13.3.6 getResponseCode
The getResponsecCode function returns the HTTP code from the last HTTP request.
Return Value:
 unsigned value of the http code returned from last request

unsigned getResponseCode(OXLO_SESSION * session)

13.3.7 getResponseData
The getResponseData function returns a pointer to the body of the last HTTP response.
Return Value:
 unsigned char * to the body of the last HTTP response.

unsigned char * getResponseData(OXLO_SESSION * session)

13.3.8 getResponseReason
The getResponseReason function returns a pointer to the string that was returned with the response.
Return Value:
 Unsigned char * to the reason returned with the response code.

unsigned char * getResponseReason(OXLO_SESSION * session);

13.3.9 getUserMessage
The getUserMessage function returns a pointer to the user message associated with the http reason returned
with the response. This user message is mapped to a reason in the userMessageMap.cfg file. There may be a
global userMessageMap.cfg file for the onrampd as well as a localized version located in the directory of the
calling process of liboxlo. The localized version overrides the user message populated by the global user
message map.
Return Value:

unsigned char * getUserMessage(OXLO_SESSION * session);

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 26 of 55 Version Number: 20061020

13.3.10 getMessageId
The getMessageId function returns a pointer to a zero-terminated char string that is the message id for the last
message sent for this session. This method is an accessor to the message id information stored within the
session structure.
Return Value:
 char * to a zero-terminated string that represents the message id for the last message sent on this
session.
char * getMessageId(OXLO_SESSION * session);

13.3.11 getTimeout
The getTimeout function is an accessor to the timeout value in seconds for a correlated send. This is only valid
after a sendCorrelatedMessage or a SendFile/SendBuffer.
Return Value:
 int – timeout to wait for the corresponding response message in seconds

• int getTimeout(OXLO_SESSION * session);

13.3.12 getPollingInterval
The getPollingInterval function is an accessor to the polling interval in seconds for a correlated send. This is
only valid after a sendCorrelatedMessage or a SendFile/SendBuffer.
Return Value:
 int – polling interval to check for corresponding response message in seconds.

• int getPollingInterval(OXLO_SESSION * session);

13.3.13 getExpectedMessageCount
The getExpectedMessageCount function is an accessor to the number of expected messages to wait for in
relation to a correlated send. This is only valid after a sendCorrelatedMessage or a SendFile/SendBuffer.
Return Value:
 int – number of messages to look for in the inbox for the original message sent.

• int getExpectedMessageCount(OXLO_SESSION * session);

13.3.14 Utility Functions

13.3.15 sendAuditPing
Test connectivity between this client and the endpoint specified in the local profile. Calling this method starts a
new session that attempts to connect to the Oxlo hosted service environment using HTTPS (not ICMP/Ping).
Return values:
 0 = ONRAMP_SUCCESS = connectivity is good
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 27 of 55 Version Number: 20061020

 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request
 -20 = ONRAMP_REQ_REJECTED = request was rejected
 -21 = ONRAMP_REQ_DEFERRED = request was deferred
 -90 = ONRAMP_UNABLE_TO_FIND_OCTD = unable to connect to octd
 -98 = ONRAMP_CERTIFICATE_DECRYPT_FAILED = certificate decryption failed
 -99 = ONRAMP_CERTIFICATE_COULD_NOT_ATTACH = could not attach client certificate
 -100 = ONRAMP_LICENSE_INVALID = license invalid

int sendAuditPing(OXLO_SESSION * session)

13.4 liboxloVersion
Get the version of this communication client. This allows the user of this dll to determine the client version and
therefore the set of methods that are avail.
Return value:

version number (132 for version 1.32)

int liboxloVersion(void)

13.5 onrampdVersion
Get the version of the onrampd service/daemon. This allows the user of this dll to determine the onrampd
version.
Return value:

version number (134 for version 1.34)
 0 = ONRAMP_SUCCESS = connectivity is good
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out
 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request
 -20 = ONRAMP_REQ_REJECTED = request was rejected
 -21 = ONRAMP_REQ_DEFERRED = request was deferred
 -90 = ONRAMP_UNABLE_TO_FIND_ONRAMPD = unable to connect to onrampd
 -100 = ONRAMP_LICENSE_INVALID = license invalid

int onrampdVersion(void)

13.5.1 Administrative Functions

13.6 setSenderId (session, inSessionId)
The setSenderId function allows the user to override the default senderId that is loaded from the configuration
file. This allows the user in a hosted model to specify who the sender of this file/BOD.
Return value: void

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 28 of 55 Version Number: 20061020

void setSenderId(OXLO_SESSION * session, char *inSenderId);

13.7 setApplicationId(session, inAppId)
The setApplicationId function allows the user to override the default ApplicationId that is loaded from the
configuration file.
Return value: void

void setApplicationId(OXLO_SESSION * inSession, char *inAppId);

13.8 setDocVersion (session, inDocVersion)
The setDocVersion function allows the user to override the default docVersion that is loaded from the
configuration file.
Return value: void

void setDocVersion(OXLO_SESSION * session, float inDocVersion);

13.8.1 Message Sending Functions

13.8.1.1 sendFile (session, file name, destId, docType)
The sendFile function allows the user of this dll to send a file to the Oxlo hosted service environment. There are
two variants of this function, one of which takes an extra parameter to signify which document version file
represents. If the parameter is not specified, the document version delivered to the Oxlo hosted service
environment is 1.0. This will aid tracking changes in document format. This is used for transformation and
mapping purposes.
Return value:
 0 = ONRAMP_SUCCESS = connectivity is good
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out
 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request
 -20 = ONRAMP_REQ_REJECTED = request was rejected
 -21 = ONRAMP_REQ_DEFERRED = request was deferred
 -22 = ONRAMP_CANNOT_OPEN_FILE = could not open file
 -23 = ONRAMP_CANNOT_ATTACH_BODY = could not attach file as body
 -30 = ONRAMP_ERR_HASH_FAILED = could not generate hash value of file
 -90 = ONRAMP_UNABLE_TO_FIND_OCTD = unable to connect to octd
 -98 = ONRAMP_CERTIFICATE_DECRYPT_FAILED = certificate decryption failed
 -99 = ONRAMP_CERTIFICATE_COULD_NOT_ATTACH = could not attach client certificate
 -100 = ONRAMP_LICENSE_INVALID = license invalid

• int sendFile(OXLO_SESSION * session, char *fname, char *destId,
 char *docType);

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 29 of 55 Version Number: 20061020

13.8.1.2 sendBuffer (session, data, data length, destId, docType)
The sendBuffer function allows the user of this dll to send a document from a memory buffer. There are two
variants of this function, one of which takes an extra parameter to signify which document version file
represents. If the parameter is not specified, the document version delivered to the Oxlo hosted service
environment is 1.0. This will aid tracking changes in document format. This is used for transformation and
mapping purposes.
Return value:
 0 = ONRAMP_SUCCESS = connectivity is good
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out
 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request
 -20 = ONRAMP_REQ_REJECTED = request was rejected
 -21 = ONRAMP_REQ_DEFERRED = request was deferred
 -24 = ONRAMP_CANNOT_ATTACH_BUFFER = could not attach buffer as body
 -30 = ONRAMP_ERR_HASH_FAILED = could not generate hash value of file
 -90 = ONRAMP_UNABLE_TO_FIND_OCTD = unable to connect to octd
 -98 = ONRAMP_CERTIFICATE_DECRYPT_FAILED = certificate decryption failed
 -99 = ONRAMP_CERTIFICATE_COULD_NOT_ATTACH = could not attach client certificate
 -100 = ONRAMP_LICENSE_INVALID = license invalid

• int sendBuffer(OXLO_SESSION * session, const unsigned char *data,
 const long dataLen, char *destId, char *docType);

13.8.1.3 sendCorrelatedMessageFromFile
The sendCorrelatedMessageFromFile function sends a message to Oxlo Systems, retrieves polling information
(timeout, polling interval, number of expected messages, etc), and starts polling the inbox to retrieve the
correlated response message.
Return value:
 0 = ONRAMP_SUCCESS = connectivity is good
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out
 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request
 -20 = ONRAMP_REQ_REJECTED = request was rejected
 -21 = ONRAMP_REQ_DEFERRED = request was deferred
 -22 = ONRAMP_CANNOT_OPEN_FILE = could not open file
 -23 = ONRAMP_CANNOT_ATTACH_BODY = could not attach file as body
 -24 = ONRAMP_CANNOT_ATTACH_BUFFER = could not attach buffer as body
 -30 = ONRAMP_ERR_HASH_FAILED = could not generate hash value of file
 -31 = ONRAMP_NO_CORRELATION_MSG_ID = the correlation messageid is incorrect
 -32 = ONRAMP_CORRELATION_TIMEOUT = could not retrieve the required number of
 messages within the timeout period.

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 30 of 55 Version Number: 20061020

 -90 = ONRAMP_UNABLE_TO_FIND_ONRAMPD = unable to connect to onrampd
 -91 = ONRAMP_UNABLE_TO_AUTH_ONRAMPD = unable to authenticate with onrampd
 -92 = ONRAMP_IPC_SEND_ERROR = unable to send request to onrampd
 -93 = ONRAMP_IPC_RCV_ERROR = unable to process response from onrampd
 -94 = ONRAMP_NOT_ENOUGH_INFO_TO_PROCESS = unable to process request

 not enough info to complete processing
 -95 = ONRAMP_INVALID_SESSION
 -98 = ONRAMP_CERTIFICATE_DECRYPT_FAILED = certificate decryption failed
 -99 = ONRAMP_CERTIFICATE_COULD_NOT_ATTACH = could not attach client certificate
 -100 = ONRAMP_LICENSE_INVALID = license invalid

• int sendCorrelatedMessageFromFile(OXLO_SESSION * session, int
numRespSessions, char *fname, char *destId, char *docType);

13.8.1.4 sendCorrelatedMessageFromBuffer
The sendCorrelatedMessageFromBuffer function sends a message to Oxlo Systems, retrieves polling
information (timeout, polling interval, number of expected messages, etc), and starts polling the inbox to retrieve
the correlated response message.
Return value:
 0 = ONRAMP_SUCCESS = connectivity is good
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out
 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request
 -20 = ONRAMP_REQ_REJECTED = request was rejected
 -21 = ONRAMP_REQ_DEFERRED = request was deferred
 -24 = ONRAMP_CANNOT_ATTACH_BUFFER = could not attach buffer as body
 -30 = ONRAMP_ERR_HASH_FAILED = could not generate hash value of file
 -31 = ONRAMP_NO_CORRELATION_MSG_ID = the correlation messageid is incorrect
 -32 = ONRAMP_CORRELATION_TIMEOUT = could not retrieve the required number of
 messages within the timeout period.
 -90 = ONRAMP_UNABLE_TO_FIND_ONRAMPD = unable to connect to onrampd
 -91 = ONRAMP_UNABLE_TO_AUTH_ONRAMPD = unable to authenticate with onrampd
 -92 = ONRAMP_IPC_SEND_ERROR = unable to send request to onrampd
 -93 = ONRAMP_IPC_RCV_ERROR = unable to process response from onrampd
 -94 = ONRAMP_NOT_ENOUGH_INFO_TO_PROCESS = unable to process request

 not enough info to complete processing
 -95 = ONRAMP_INVALID_SESSION
 -98 = ONRAMP_CERTIFICATE_DECRYPT_FAILED = certificate decryption failed
 -99 = ONRAMP_CERTIFICATE_COULD_NOT_ATTACH = could not attach client certificate
 -100 = ONRAMP_LICENSE_INVALID = license invalid

• int sendCorrelatedMessageFromBuffer(OXLO_SESSION * session, int
numRespSessions, const unsigned char *data, const long dataLen, char
*destId, char *docType);

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 31 of 55 Version Number: 20061020

13.8.1.5 getMessageIds (session)
The getMessageIds retrieves a list of message ids of messages that are waiting in the Inbox. The message id’s
are returned in the body of the http response and are listed one per line. This is accessible using the
getResponseData(session) method and converting each messages id from text (a string) to an unsigned long.
Return value:
 0 = ONRAMP_SUCCESS = connectivity is good
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out
 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request
 -20 = ONRAMP_REQ_REJECTED = request was rejected
 -21 = ONRAMP_REQ_DEFERRED = request was deferred
 -90 = ONRAMP_UNABLE_TO_FIND_OCTD = unable to connect to octd
 -98 = ONRAMP_CERTIFICATE_DECRYPT_FAILED = certificate decryption failed
 -99 = ONRAMP_CERTIFICATE_COULD_NOT_ATTACH = could not attach client certificate
 -100 = ONRAMP_LICENSE_INVALID = license invalid

• int getMessageIds(OXLO_SESSION * session);

13.8.1.6 getMessageIdArray(session)
The getMessageIdArray function is a helper function for converting the message id list from the http body
(text/string form) to an array of unsigned long integers for use in the getMessagexxx and deleteMessage
functions.
Return value: unsigned long int ** getMessageIdArray; array of unsigned long integers.

• unsigned long ** getMessageIdArray(OXLO_SESSION * session)

13.8.1.7 getMessageAsBuffer(session, msgId)
The getMessageAsBuffer function is used to retrieve a message from the Inbox and place it into a buffer.
Return value:
 0 = ONRAMP_SUCCESS = connectivity is good
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out
 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request
 -20 = ONRAMP_REQ_REJECTED = request was rejected
 -21 = ONRAMP_REQ_DEFERRED = request was deferred
 -90 = ONRAMP_UNABLE_TO_FIND_OCTD = unable to connect to octd
 -98 = ONRAMP_CERTIFICATE_DECRYPT_FAILED = certificate decryption failed
 -99 = ONRAMP_CERTIFICATE_COULD_NOT_ATTACH = could not attach client certificate
 -100 = ONRAMP_LICENSE_INVALID = license invalid

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 32 of 55 Version Number: 20061020

• int getMessageAsBuffer(OXLO_SESSION * session,
 unsigned long msgId);

13.8.1.8 getMessageAsFile(session, msgId, filename)
The getMessageAsFile function is used to retrieve a message from the Inbox and write it to a file.
Return value:
 0 = ONRAMP_SUCCESS = connectivity is good
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out
 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request
 -20 = ONRAMP_REQ_REJECTED = request was rejected
 -21 = ONRAMP_REQ_DEFERRED = request was deferred
 -90 = ONRAMP_UNABLE_TO_FIND_OCTD = unable to connect to octd
 -98 = ONRAMP_CERTIFICATE_DECRYPT_FAILED = certificate decryption failed
 -99 = ONRAMP_CERTIFICATE_COULD_NOT_ATTACH = could not attach client certificate
 -100 = ONRAMP_LICENSE_INVALID = license invalid

• int getMessageAsFile(OXLO_SESSION * session,
 unsigned long msgId, char * filename);

13.8.1.9 deleteMessage(session, msgId)
The deleteMessage function allows the user to delete a message from the Inbox.
Return value:

• int deleteMessage(OXLO_SESSION * session, unsigned long msgId);

 0 = ONRAMP_SUCCESS = connectivity is good
 1 = ONRAMP_GENERIC_ERROR = Generic error
 2 = ONRAMP_HOST_NOTFOUND = Server or proxy hostname lookup failed
 3 = ONRAMP_AUTH_FAILED = User authentication failed on server
 4 = ONRAMP_PROXY_AUTH_FAILED = User authentication failed on proxy
 5 = ONRAMP_CONNECT_FAILED = Could not connect to server
 6 = ONRAMP_CONNECT_TIMEOUT = Connection timed out
 7 = ONRAMP_PRECONDITION_FAILED = The precondition failed
 8 = ONRAMP_ASYNC_RETRY_REQUEST = Retry request
 9 = ONRAMP_REDIRECT_REQUESTED = Redirect request
 -20 = ONRAMP_REQ_REJECTED = request was rejected
 -21 = ONRAMP_REQ_DEFERRED = request was deferred
 -90 = ONRAMP_UNABLE_TO_FIND_OCTD = unable to connect to octd
 -98 = ONRAMP_CERTIFICATE_DECRYPT_FAILED = certificate decryption failed
 -99 = ONRAMP_CERTIFICATE_COULD_NOT_ATTACH = could not attach client certificate
 -100 = ONRAMP_LICENSE_INVALID = license invalid

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 33 of 55 Version Number: 20061020

13.8.1.10 getRetrievedMessageType (session)
The getRetrievedMessageType function returns a pointer to a null-terminated string that is the type of
message that was just retrieved from the inbox using this session. This can be used to determine how to
parse or save the payload.
Return value:
 pointer to a null-terminated string that describes the message type.

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 34 of 55 Version Number: 20061020

14 Appendix A – Code Samples
The following samples are intended to provide best practice guidance for an Oxlo partner in developing an OnRamp™
communications module. Please be aware that each of these samples includes detailed comments to describe where the
developer must implement their own application specific code, for example calling a common logging module. Additionally the
outer logic of calling the communications code will likely vary across application modules. Is this an automated back end
process (GM RIM), or an interactive user driven process (RouteOne) should be considered in planning specific error handling,
calling retry logic, etc… Samples have been provided in C, C# and Visual Basic to provide structure and syntax in a variety of
programming languages. If you require additional guidance in another language please contact your Oxlo Integration
consultant for support. These examples are intended to provide a reusable, core structure that may be called from any
application that leverages OnRamp. However, if you feel that these examples do not meet your integration specific needs
please contact Oxlo to discuss other implementation options.

14.1 C Sample Code
/*
 * Copyright (c) 2004-2007 Oxlo Systems, Inc.. All Rights Reserved.
 *
 * OXLO SYSTEMS, INC. MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. OXLO SYSTEMS INC. SHALL NOT BE LIABLE FOR
 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
*/

#include "liboxlo.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#ifndef bool
 #define bool unsigned char
#endif

#ifndef false
 #define false 0
 #define true !false
#endif

/* forward declarations */
int SendMessage(char *SenderID, char *ApplicationID, float DocVersion,
 char *DocType, char *DestinationID, char *MessageFile);
int SendCorrelatedMessage(char *SenderID, char *ApplicationID, float DocVersion,

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 35 of 55 Version Number: 20061020

 char *DocType, char *DestinationID, char *MessageFile, char *ResponseFileName);
bool ProcessInBoxMessages(char *SenderID, char *ApplicationID);
void logResult(const char *inMessage, int inFunctionReturnCode, OXLO_SESSION *inSession);
bool RetrieveProcessAndDeleteMessage(unsigned long inMsgId, char * inSenderID, char * inApplicationID);
bool DeleteMessage(unsigned long inMsgId, char * delSenderID, char * delApplicationID);
bool ProcessMessage(const char *inMessageType, const char *inMessageContent, OXLO_SESSION *inSession);
void showUserMessage(OXLO_SESSION *inSession);

/* SendMessage send a message/file to Oxlo and returns an integer code.
 All return codes are defined in liboxlo.h
 The success code is: ONRAMP_SUCCESS=0
*/
int SendMessage(char *SenderID,
 char *ApplicationID,
 float DocVersion,
 char *DocType,
 char *DestinationID,
 char *MessageFile)
{
 // Create a session to use to send this message
 OXLO_SESSION session;
 int retCode = createSession(&session);
 if (retCode != ONRAMP_SUCCESS)
 {
 // log error message to stderr or to log file
 logResult("Unable to createSession", retCode, NULL);
 return retCode;
 }

 // Now set up session parameters
 setSenderId(&session, SenderID);
 setApplicationId(&session, ApplicationID);
 setDocVersion(&session, DocVersion);

 if (retCode != ONRAMP_SUCCESS)
 {
 // if the retCode is ONRAMP_REQ_REJECTED then the user
 // message (getUserMessage function) tells you more about
 // the error.
 if (retCode == ONRAMP_REQ_REJECTED)
 {
 // Call to user message error handling routine
 showUserMessage(&session);
 logResult("SendFile failed", retCode, &session);
 destroySession(&session);
 // return error status
 return retCode;
 } else {

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 36 of 55 Version Number: 20061020

 // log error message to stderr or to log file
 logResult("SendFile failed", retCode, &session);
 destroySession(&session);
 // return error status
 return retCode;
 }
 }

 // Now free up the memory used in this session
 destroySession(&session);

 // return good status
 // return ONRAMP_SUCCESS - retCode should equal ONRAMP_SUCCESS
 return retCode;
}

/* show the user an error message */
void showUserMessage(OXLO_SESSION *inSession)
{
 /* if this has an interactive user then show the message to the user
 * if this is an automated send then remove the printf line that follows
 * DSP needs to implement logic to determine if this should be logged to the user's
 * screen, or to a log file (automated batch process)
 */

 printf("The following error occured while attempting to send this message: %s\n",
 getUserMessage(inSession));
}

/* logResult - log a message and related result information */
void logResult(const char *inMessage, int inFunctionReturnCode, OXLO_SESSION *inSession)
{
 /* in this case I'll just write the message to stderr;
 you could write it to a log file.
 */
 if (inSession != NULL) {
 fprintf(stderr,
 "%s returned: %d with responseCode: %d responseReason: %s userMessage: %s responseData: %s\n",
 inMessage, inFunctionReturnCode,
 getResponseCode(inSession), getResponseReason(inSession),
 getUserMessage(inSession), getResponseData(inSession));
 } else {
 fprintf(stderr, "%s returned: %d\n", inMessage, inFunctionReturnCode);
 }
}

/* SendACorrelatedMessage sends a message to Oxlo and retrieves the corresponding response message from the inbox.

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 37 of 55 Version Number: 20061020

 All return codes are defined in liboxlo.h
 The success code is: ONRAMP_SUCCESS=0
 If the return code is ONRAMP_SUCCESS then the corresponding message from the inbox
 has been saved to disk as the filename given 'ResponseFileName'

*/
int SendCorrelatedMessage(char *SenderID,
 char *ApplicationID,
 float DocVersion,
 char *DocType,
 char *DestinationID,
 char *MessageFile,
 char *ResponseFileName)
{
 // Create a session to use to send this message
 OXLO_SESSION session;
 int retCode = createSession(&session);
 if (retCode != ONRAMP_SUCCESS)
 {
 // log error message to stderr or to log file
 logResult("Unable to createSession", retCode, NULL);
 return retCode;
 }

 // Now set up session parameters
 setSenderId(&session, SenderID);
 setApplicationId(&session, ApplicationID);
 setDocVersion(&session, DocVersion);

 // Now send the message
 // the 2nd parameter 1 - indicates that 1 response is expected
 retCode = sendCorrelatedMessageFromFile(&session, 1, MessageFile, DestinationID, DocType);
 if (retCode != ONRAMP_SUCCESS)
 {
 // if the retCode is ONRAMP_REQ_REJECTED then the user
 // message (getUserMessage function) tells you more about
 // the error.
 if (retCode == ONRAMP_REQ_REJECTED)
 {
 // Call to user message error handling routine
 showUserMessage(&session);
 logResult("SendFile failed", retCode, &session);
 destroySession(&session);
 // return error status
 return retCode;
 } else {
 // log error message to stderr or to log file
 logResult("SendFile failed", retCode, &session);

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 38 of 55 Version Number: 20061020

 destroySession(&session);
 // return error status
 return retCode;
 }
 }

 // now save the response data to 'ResponseFileName'
 // if saveSessionResponseDataToFile fails we clean up the session and return that retCode.
 retCode = saveSessionResponseDataToFile(&session, ResponseFileName);

 // Now free up the memory used in this session
 destroySession(&session);

 // return good status
 // return ONRAMP_SUCCESS - retCode should equal ONRAMP_SUCCESS
 return retCode;
}

/* ProcessInBoxMessages
 - retrieves messageid's for messages waiting in the inbox to be processed,
 then retrieves the message and deletes it.
 - end users MUST fill in the 'ProcessMessage' function below
*/
bool ProcessInBoxMessages(char *SenderID, char *ApplicationID)
{
 bool bResult = true;
 unsigned long msgId = 0;

 // Create a session to use to send this message
 OXLO_SESSION msgIdsSession;
 int retCode = createSession(&msgIdsSession);
 if (retCode != ONRAMP_SUCCESS)
 {
 // log error message to stderr or to log file
 logResult("Unable to createSession in ProcessInBoxMessages", retCode, NULL);
 return false;
 }

 // Now set up session parameters
 setSenderId(&msgIdsSession, SenderID);
 setApplicationId(&msgIdsSession, ApplicationID);

 // Now retrieve the message ids
 retCode = getMessageIds(&msgIdsSession);
 if (retCode == ONRAMP_SUCCESS)
 {
 char * msgIdsPayload = (char *)getResponseData(&msgIdsSession);
 char * msgIdPtr = strtok(msgIdsPayload, "\r\n");

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 39 of 55 Version Number: 20061020

 while (msgIdPtr) {
 /* convert string to unsigned long msgId - if atol fails it returns 0 */
 msgId = (unsigned long)atol(msgIdPtr);
 if (msgId != 0) {
 bResult &= RetrieveProcessAndDeleteMessage(msgId,SenderID,ApplicationID);
 }
 msgIdPtr = strtok(NULL, "\r\n");
 }
 } else {
 // log error message to stderr or to log file
 logResult("getMessageIds failed", retCode, &msgIdsSession);
 bResult = false;
 }

 // Now free up the memory used in this session
 destroySession(&msgIdsSession);

 // return the status
 return bResult;
}

/* RetrieveProcessAndDeleteMessage - retrieves and processes the message specified by inMsgId
*/
bool RetrieveProcessAndDeleteMessage(unsigned long inMsgId, char * inSenderID, char* inApplicationID)
{
 OXLO_SESSION retrieveMsgSession;
 /* create a session - if it fails then return false */
 int retCode = createSession(&retrieveMsgSession);
 if (retCode != ONRAMP_SUCCESS) {
 // log error message to stderr or to log file
 logResult("Unable to createSession in RetrieveProcessAndDeleteMessage", retCode, NULL);
 return false;
 }

 // Now set up session parameters
 setSenderId(&retrieveMsgSession, inSenderID);
 setApplicationId(&retrieveMsgSession, inApplicationID);

 /* get message and process it */
 retCode = getMessageAsBuffer(&retrieveMsgSession, inMsgId);
 if (retCode != ONRAMP_SUCCESS) {
 // log error message to stderr or to log file
 logResult("getMessageAsBuffer failed", retCode, &retrieveMsgSession);
 destroySession(&retrieveMsgSession);
 return false;
 }

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 40 of 55 Version Number: 20061020

 /* get content of the message that was retrieved */
 /* do not free messageContent - this memory belongs to the retrieveMsgSession struct */
 const char * messageContent = getResponseData(&retrieveMsgSession);
 /* get a character string that describes the type of message just retrieved from the inbox */
 const char * messageType = getRetrievedMessageType(&retrieveMsgSession);

 /* attempt to process this message - this function calls CUSTOMER SPECIFIC code */
 if (ProcessMessage(messageType, messageContent, &retrieveMsgSession) != true) {
 // log error message to stderr or to log file
 logResult("ProcessMessage failed", 0, NULL);
 destroySession(&retrieveMsgSession);
 return false;
 }
 /* attempt to delete the message from the InBox
 - log and escalate if it fails, this would mean that the message was
 processed by the customer code but we were unable to delete it from
 the InBox and therefore next time around we will retrieve and process
 the same message again.
 */
 if (DeleteMessage(inMsgId,inSenderID,inApplicationID) != true) {
 // log error message to stderr or to log file
 logResult("DeleteMessage failed", retCode, NULL);
 destroySession(&retrieveMsgSession);
 return false;
 }

 /* clean up retrieveMsgSession session */
 destroySession(&retrieveMsgSession);
 return true;
}

/* DeleteMessage - deletes the specific message from the InBox */
bool DeleteMessage(unsigned long inMsgId, char* delSenderID, char* delApplicationID)
{
 OXLO_SESSION deleteMsgSession;
 /* create a session - if it fails then return false */
 int retCode = createSession(&deleteMsgSession);
 if (retCode != ONRAMP_SUCCESS) {
 // log error message to stderr or to log file
 logResult("Unable to createSession in DeleteMessage", retCode, NULL);
 return false;
 }

 // Now set up session parameters
 setSenderId(&deleteMsgSession, delSenderID);
 setApplicationId(&deleteMsgSession, delApplicationID);

 /* delete this message from the InBox */

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 41 of 55 Version Number: 20061020

 retCode = deleteMessage(&deleteMsgSession, inMsgId);
 if (retCode != ONRAMP_SUCCESS) {
 // log error message to stderr or to log file
 logResult("deleteMessage failed", retCode, &deleteMsgSession);
 destroySession(&deleteMsgSession);
 return false;
 }

 /* clean up retrieveMsgSession session */
 destroySession(&deleteMsgSession);
 return true;
}

/************ TODO *****************
THE CUSTOMER MUST FILL IN THE APPROPRIATE MESSAGE PROCESSING LOGIC HERE!
*/
bool ProcessMessage(const char *inMessageType, const char *inMessageContent, OXLO_SESSION *inSession)
{
 /* TODO: the customer MUST fill in this function.
 * Do not free inMessageType or inMessageContent.
 * return true if the message was processed ok.
 * return false if the message was not processed properly.
 */

 /* example of saving results to different filenames based on inMessageType
 *
 if (strcmp(inMessageType, "ProcessManagedPartsOrder") == 0) {
 retCode = saveSessionResponseDataToFile(inSession, "xxx.PMPO");
 } else if (strcmp(inMessageType, "PrintFinancialStatement") == 0) {
 retCode = saveSessionResponseDataToFile(inSession, "xxx.PFS.PDF");
 }
 */

 int retCode = saveSessionResponseDataToFile(inSession, "xxx.xml");

 if (retCode == ONRAMP_SUCCESS) {
 return true;
 } else {
 return false;
 }

}

14.2 C# Sample Code (OCX Implemetation)
/*
 * Copyright (c) 2004-2007 Oxlo Systems, Inc.. All Rights Reserved.
 *

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 42 of 55 Version Number: 20061020

 * OXLO SYSTEMS, INC. MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
 * THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
 * TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT. OXLO SYSTEMS INC. SHALL NOT BE LIABLE FOR
 * ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
*/

using System;
using System.Diagnostics;
//Add message box namespace here
//using System.Windows
using OCT_ACTIVEXLib;

namespace OnRamp
{
 public class OnRamp
 {
 private OCT_ActiveX onRampActiveX;

 public const int ONRAMP_SUCCESS = 0;
 public const int ONRAMP_REQ_REJECTED = -20;
 private const char NEWLINE = '\n';

 public OnRamp()
 {
 onRampActiveX = new OCT_ActiveX();
 }

 /* USER MUST FILL IN THESE METHODS FOR THIS TO WORK */

 private void logMessage(string message)
 {
 // This method needs to be implemented
 // Send the message to your own logging mechanism
 Trace.WriteLine(message);
 }

 private bool processMessage(string messageType, string messageContent, ref OCT_ActiveX inOnRampActiveX)
 {
 // This method needs to be implemented
 /* TODO: the customer MUST fill in this function.
 * return true if the message was processed ok.
 * return false if the message was not processed properly.
 */

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 43 of 55 Version Number: 20061020

 // example - select a filename based on messageType
 /*int retCode;
 if (messageType == "ProcessManagedPartsOrder")
 {
 retCode = inOnRampActiveX.saveSessionResponseDataToFile("xxx.pmpo.xml");
 } else if (messageType == "PrintFinacialStatement")
 {
 retCode = inOnRampActiveX.saveSessionResponseDataToFile("xxx.pdf");
 }
 */

 //example - write everything to a file
 int retCode = inOnRampActiveX.saveSessionResponseDataToFile(messageType + "somethingUnique.xml");
 if (retCode != ONRAMP_SUCCESS) { return false; }

 return true;
 }

 private void handleUserMessage(string userMessage)
 {
 bool interactiveUser = true;
 // This method needs to be implemented
 if (interactiveUser)
 {
 //MessageBox.Show(userMessage);
 }
 else
 {
 logMessage(userMessage);
 }
 }

 /* END FILL IN THESE METHODS */

 public int SendMessage(string SenderID, string ApplicationID, float DocVersion, string DocType, string DestinationID, string MessageFilePath)
 {
 int retCode = 0;

 try
 {
 retCode = onRampActiveX.createSession();
 if (retCode == ONRAMP_SUCCESS)
 {
 // Now set up session parameters
 onRampActiveX.setSenderId(SenderID);

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 44 of 55 Version Number: 20061020

 onRampActiveX.setApplicationId(ApplicationID);
 onRampActiveX.setDocVersion(DocVersion);

 // Now send the message
 retCode = onRampActiveX.sendFile(MessageFilePath, DestinationID, DocType);
 if (retCode != ONRAMP_SUCCESS)
 {
 // if the retCode is ONRAMP_REQ_REJECTED then the user
 // message (getUserMessage function) tells you more about
 // the error.
 if (retCode == ONRAMP_REQ_REJECTED)
 {
 /* if this has an interactive user then show the message to the user
 * DSP needs to implement logic to determine if this should be logged to the user's
 * screen, or to a log file (automated batch process)
 */
 string UserMsg = onRampActiveX.getUserMessage();
 handleUserMessage(UserMsg);
 }
 else
 {
 // log error message to stderr or to log file
 logMessage("SendFile failed and returned: " + retCode);
 }
 }
 }
 else
 {
 //log error to a file or standard error
 logMessage("Error Creating Session: " + retCode);
 }
 }
 catch (Exception e)
 {
 //log error to standard error, log file, or anywhere else
 logMessage("SendFile Threw an Exception: " + e.Message);
 }
 finally
 {
 onRampActiveX.destroySession();
 }

 // return status
 return retCode;

 }

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 45 of 55 Version Number: 20061020

 public int SendCorrelatedMessage(string SenderID, string ApplicationID, float DocVersion, string DocType, string DestinationID,
 string MessageFilePath, string ResponseFilePath)
 {
 int retCode = 0;

 try
 {
 retCode = onRampActiveX.createSession();

 if (retCode == ONRAMP_SUCCESS)
 {
 // Now set up session parameters
 onRampActiveX.setSenderId(SenderID);
 onRampActiveX.setApplicationId(ApplicationID);
 onRampActiveX.setDocVersion(DocVersion);

 // Now send the message
 retCode = onRampActiveX.sendCorrelatedMessageFromFile(MessageFilePath, DestinationID, DocType);
 if (retCode != ONRAMP_SUCCESS)
 {
 // if the retCode is ONRAMP_REQ_REJECTED then the user
 // message (getUserMessage function) tells you more about
 // the error.
 if (retCode == ONRAMP_REQ_REJECTED)
 {
 // Call to user message error handling routine
 string UserMsg = onRampActiveX.getUserMessage();
 handleUserMessage(UserMsg);
 }
 else
 {
 // log error message to stderr or to log file
 logMessage("SendFile failed and returned: " + retCode);
 }
 }
 else
 { // retCode was equal to ONRAMP_SUCCESS
 // now save the response data to the ResponseFilePath
 retCode = onRampActiveX.saveSessionResponseDataToFile(ResponseFilePath);
 if (retCode != ONRAMP_SUCCESS)
 {
 //Replace this with a call to your logging
 logMessage("saveSessionResponseDataToFile failed with return code: " + retCode);
 }
 }

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 46 of 55 Version Number: 20061020

 }
 else
 {
 //log error to a file or standard error
 logMessage("Error Creating Session: " + retCode);
 }
 }
 catch (Exception e)
 {
 //log error to standard error, log file, or anywhere else
 logMessage("SendFile Threw an Exception: " + e.Message);
 }
 finally
 {
 onRampActiveX.destroySession();
 }

 // return status
 return retCode;

 }

 public bool ProcessInBoxMessages(string SenderID, string ApplicationID)
 {
 int retCode = 0;
 bool result = true;

 try
 {
 //Create a session
 retCode = onRampActiveX.createSession();

 if (retCode == ONRAMP_SUCCESS)
 {

 // Now set up session parameters
 onRampActiveX.setSenderId(SenderID);
 onRampActiveX.setApplicationId(ApplicationID);

 //get the messagesIDs
 retCode = onRampActiveX.getMessageIds();
 if (retCode == ONRAMP_SUCCESS)
 {
 string data = onRampActiveX.getResponseData();
 //message Id's come back in a space delimited format
 string[] messageIds = data.Split(NEWLINE);

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 47 of 55 Version Number: 20061020

 //walk through each message in the inbox
 for (int i = 0; i < messageIds.Length; i++)
 {
 //convert the message ID from a string to an int
 int msgId = int.Parse(messageIds[i].Trim());
 //call getMessageAsFile, can also use getMessageAsBuffer here
 retCode = onRampActiveX.getMessageAsBuffer(msgId);
 if (retCode != ONRAMP_SUCCESS)
 {
 logMessage("Error getting message from Inbox: ID=" + msgId + " returnCode =" + retCode);
 result = false;
 }
 else
 {

 if (processMessage(onRampActiveX.getRetrievedMessageType(),onRampActiveX.getResponseData(),ref onRampActiveX) == true)
 {
 //Delete the message from the inbox
 retCode = onRampActiveX.deleteMessage(msgId);
 if (retCode != ONRAMP_SUCCESS)
 {
 logMessage("Error Deleting Message from Inbox: ID=" + msgId + " returnCode =" + retCode);
 result = false;
 }
 }
 else
 {
 result = false;
 logMessage("Error in processMessage");
 }
 }
 }
 }
 else
 {
 logMessage("Error Getting MessageID's: " + retCode);
 return false;
 }
 }
 else
 { //log error to a file or standard error
 logMessage("Error Creating Session: " + retCode);
 return false;
 }
 }

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 48 of 55 Version Number: 20061020

 catch (Exception e)
 {
 logMessage("SendFile Threw an Exception: " + e.Message);
 return false;
 }
 finally
 {
 //delete the session
 onRampActiveX.destroySession();
 }

 // return status
 return result;
 }

 }
}

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 49 of 55 Version Number: 20061020

14.3 Visual Basic 6 Sample Code (OCX Implementation)
 ‘ Copyright (c) 2004-2007 Oxlo Systems, Inc.. All Rights Reserved.
 ‘
 ‘ OXLO SYSTEMS, INC. MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF
 ‘ THE SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
 ‘ TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
 ‘ PARTICULAR PURPOSE, OR NON-INFRINGEMENT. OXLO SYSTEMS INC. SHALL NOT BE LIABLE FOR
 ‘ ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 ‘ DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

 Const ONRAMP_SUCCESS As Integer = 0
 Const ONRAMP_REQ_REJECTED As Integer = -20
 Const NEWLINE As String = "\n"

 Public Function SendMessage(ByVal SenderID As String, ByVal ApplicationID As String, ByVal DocVersion As Single, ByVal DocType As String, ByVal
DestinationID As String, ByVal MessageFilePath As String) As Integer
 Dim retCode As Integer
 Dim sendMessageOnRampActiveX As New OCT_ACTIVEXLib.OCT_ActiveX

 retCode = sendMessageOnRampActiveX.createSession()
 If retCode <> ONRAMP_SUCCESS Then
 'log error to a file or standard error
 logMessage ("Error Creating Session: " + retCode)
 SendMessage = retCode
 End If

 'Now set up session parameters
 sendMessageOnRampActiveX.setSenderId (SenderID)
 sendMessageOnRampActiveX.setApplicationId (ApplicationID)
 sendMessageOnRampActiveX.setDocVersion (DocVersion)

 'Now send the message
 retCode = sendMessageOnRampActiveX.sendFile(MessageFilePath, DestinationID, DocType)
 If retCode <> ONRAMP_SUCCESS Then

 'if the retCode is ONRAMP_REQ_REJECTED then the user
 'message (getUserMessage function) tells you more about
 'the error.
 If retCode = ONRAMP_REQ_REJECTED Then

 'Call to user message error handling routine

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 50 of 55 Version Number: 20061020

 UserMsg = sendMessageOnRampActiveX.getUserMessage()
 HandleUserMessage (UserMsg)
 logMessage ("User Message Received: " + UserMsg)
 Else

 'log error message to stderr or to log file
 logMessage ("SendFile failed and returned: " + retCode)
 End If

 End If

 sendMessageOnRampActiveX.destroySession

 'return status
 SendMessage = retCode
 End Function

 Public Function SendCorrelatedMessage(ByVal SenderID As String, ByVal ApplicationID As String, ByVal DocVersion As Single, ByVal DocType As String,
ByVal DestinationID As String, ByVal MessageFilePath As String, ByVal ResponseFilePath As String) As Integer
 Dim sendCorrelatedMessageOnRampActiveX As New OCT_ACTIVEXLib.OCT_ActiveX
 Dim retCode As Integer
 retCode = sendCorrelatedMessageOnRampActiveX.createSession()
 If retCode <> ONRAMP_SUCCESS Then
 'log error to a file or standard error
 logMessage ("Error Creating Session in SendCorrelatedMessage: " + retCode)
 SendCorrelatedMessage = retCode
 End If

 'Now set up session parameters
 sendCorrelatedMessageOnRampActiveX.setSenderId (SenderID)
 sendCorrelatedMessageOnRampActiveX.setApplicationId (ApplicationID)
 sendCorrelatedMessageOnRampActiveX.setDocVersion (DocVersion)

 'Now send the message
 retCode = sendCorrelatedMessageOnRampActiveX.sendCorrelatedMessageFromFile(MessageFilePath, DestinationID, DocType)
 If retCode <> ONRAMP_SUCCESS Then
 'if the retCode is ONRAMP_REQ_REJECTED then the user
 'message (getUserMessage function) tells you more about
 'the error.
 If retCode = ONRAMP_REQ_REJECTED Then

 'Call to user message error handling routine
 UserMsg = sendCorrelatedMessageOnRampActiveX.getUserMessage()
 HandleUserMessage (UserMsg)
 logMessage ("User Message Received: " + UserMsg)
 Else

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 51 of 55 Version Number: 20061020

 'log error message to stderr or to log file
 logMessage ("SendFile failed and returned: " + retCode)
 End If
 Else
 'save response data to file 'ResponseFilePath'
 retCode = sendCorrelatedMessageOnRampActiveX.saveSessionResponseDataToFile(ResponseFilePath)
 If retCode <> ONRAMP_SUCCESS Then
 logMessage ("SaveSessionResponseDataToFile failed and returned: " + retCode)
 End If
 End If

 sendCorrelatedMessageOnRampActiveX.destroySession

 'return status
 SendCorrelatedMessage = retCode
 End Function

 Public Function ProcessInBoxMessages(ByVal SenderID As String, ByVal ApplicationID As String, ByVal directoryPath As String) As Boolean
 Dim messageIdsActiveX As New OCT_ACTIVEXLib.OCT_ActiveX
 Dim retCode As Integer
 Dim bResult As Boolean
 bResult = True

 'Create a session for retrieving messageIds
 retCode = messageIdsActiveX.createSession()

 If retCode <> ONRAMP_SUCCESS Then
 'log error to a file or standard error
 Trace.WriteLine ("Error Creating Session: " + retCode)
 ProcessInBoxMessages = False
 End If

 ' Now set up session parameters
 messageIdsActiveX.setSenderId (SenderID)
 messageIdsActiveX.setApplicationId (ApplicationID)

 'get the messagesIDs
 retCode = messageIdsActiveX.getMessageIds
 If retCode = ONRAMP_SUCCESS Then
 Dim data As String
 data = messageIdsActiveX.getResponseData()
 'message Id's come back in NEWLINE delimited
 Dim messageIds() As String
 messageIds = Split(data, NEWLINE)

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 52 of 55 Version Number: 20061020

 'walk through each message in the inbox
 Dim i As Integer
 For i = LBound(messageIds) To UBound(messageIds) Step 1
 'convert the message ID from a string to an int
 Dim msgId As Long
 msgId = messageIds(i)
 bResult = bResult And RetrieveProcessAndDeleteMessage(msgId, SenderID, ApplicationID)
 Next
 Else
 logMessage ("getMessageIds failed with: " + retCode)
 End If

 'delete the session
 messageIdsActiveX.destroySession

 'return status
 ProcessInBoxMessages = bResult
 End Function

 Public Function HandleUserMessage(ByVal inMessage As String)
 ' if this is for an interactive user then display it in a message box
 ' else log it to a log file
 Dim isInteractiveUser As Boolean
 isInterativeUser = True
 If isInteractiveUser = True Then
 MsgBox (inMessage)
 Else
 logMessage (inMessage)
 End If
 End Function

 Public Function logMessage(ByVal inMessage As String)
 ' end user should push this message to THEIR logging system
 Trace.WriteLine (inMessage)
 End Function

 Private Function RetrieveProcessAndDeleteMessage(msgId As Long, inSenderID As String, inApplicationID As String) As Boolean
 Dim retCode As Integer
 Dim messageContentActiveX As New OCT_ACTIVEXLib.OCT_ActiveX

 Dim messageContent As String
 Dim contentLength As Long
 Dim messageType As String

 retCode = messageContentActiveX.createSession()
 If retCode <> ONRAMP_SUCCESS Then

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 53 of 55 Version Number: 20061020

 logMessage ("Unable to create session in RetrieveProcessAndDeleteMessage: " + retCode)
 RetrieveProcessAndDeleteMessage = False
 End If

 ' Now set up session parameters
 messageContentActiveX.setSenderId (inSenderID)
 messageContentActiveX.setApplicationId (inApplicationID)

 retCode = messageContentActiveX.getMessageAsBuffer(msgId)
 If retCode <> ONRAMP_SUCCESS Then
 logMessage ("Unable to getMessageAsBuffer in RetrieveProcessAndDeleteMessage: " + retCode)
 messageContentActiveX.destroySession
 RetrieveProcessAndDeleteMessage = False
 End If

 messageContent = messageContentActiveX.getResponseData()

 messageType = messageContentActiveX.getRetrievedMessageType()

 If ProcessMessage(messageType, messageContent, messageContentActiveX) <> True Then
 logMessage ("ProcessMessage Failed")
 messageContentActiveX.destorySession
 RetrieveProcessAndDeleteMessage = False
 End If

 If DeleteMessage(msgId, inSenderID, inApplicationID) <> True Then
 logMessage ("DeleteMessage failed")
 messageContentActiveX.destorySession
 RetrieveProcessAndDeleteMessage = False
 End If

 messageContentActiveX.destorySession
 RetrieveProcessAndDeleteMessage = True

 End Function

 Private Function DeleteMessage(inMsgId As Long, delSenderID As String, delApplicationID As String) As Boolean

 Dim retCode As Integer
 Dim deleteMessageActiveX As New OCT_ACTIVEXLib.OCT_ActiveX

 retCode = deleteMessageActiveX.createSession()
 If retCode <> ONRAMP_SUCCESS Then
 logMessage ("Unable to createSession in DeleteMessage: " + retCode)
 DeleteMessage = False
 End If

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 54 of 55 Version Number: 20061020

 ' Now set up session parameters
 deleteMessageActiveX.setSenderId (delSenderID)
 deleteMessageActiveX.setApplicationId (delApplicationID)

 retCode = deleteMessageActiveX.deleteMessage(inMsgId)
 If retCode <> ONRAMP_SUCCESS Then
 logMessage ("Unable to delete message in DeleteMessage: " + retCode)
 deleteMessageActiveX.destroySession
 DeleteMessage = False
 End If

 deleteMessageActiveX.destroySession
 DeleteMessage = True
 End Function

 Private Function ProcessMessage(inMessageType As String, inMessageContent As String, ByRef inActiveX As OCT_ACTIVEXLib.OCT_ActiveX) As Boolean
 'TODO: the customer MUST fill in this function.
 'return true if the message was processed ok.
 'return false if the message was not processed properly.

 'example of saving results to different filenames based on inMessageType
 'If inMessageType = "ProcessManagedPartsOrder" Then
 ' retCode = inActiveX.saveResponseDataAsFile("xxx.PMPO")
 'ElseIf inMessageType = "PrintFinancialStatement" Then
 ' retCode = inActiveX.saveResponseDataAsFile(inSession, "xxx.PFS.PDF")
 'End If

 Dim retCode As Integer

 retCode = inActiveX.saveResponseDataAsFile("xxx.xml")

 If retCode = ONRAMP_SUCCESS Then
 ProcessMessage = True
 Else
 ProcessMessage = False
 End If
 End Function

Trademarks
Oxlo, Oxlo OnRamp are all trademarks of Oxlo Systems Inc.

All other trademarks are the property of their respective owners.

Confidential Information – Do not copy or distribute without written permission of Oxlo Systems Inc.

 55 of 55 Version Number: 20061020

Revision History

Version Description Author

20060915 Installation and Development Guide original RRN

20060920 Merged version of installation and dev guides CW

20061018 Removed duplicate content, added functional code
samples

GG

20061020 Minor edits and format fixes CW

20070227 Updated to include correlated messaging. Updated code
samples.

GG

